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I give a short introduction to the Riemann-Hilbert problem and its connection to orthogonal
polynomials and the theory of random matrices.

I. INTRODUCTION

At the Paris conference of the International Congress
for Mathematicians in 1900 and later in Sorbonne,
David Hilbert put forth 23 unresolved problems in
mathematics.4 Hilberts problems had a big impact on re-
search done during the 20th century until today. Hilberts
twenty-first problem concerned the theory of Fuchsian
systems,2 i.e. N ×N systems of ordinary linear differen-
tial equations of the form

dψ(λ)
dλ

= A(λ)ψ(λ) (1)

where ψ(λ) is a matrix-valued function and A(λ) is a co-
efficient matrix whose N × N components are rational
functions of λ with simple poles. The fundamental solu-
tion (Greens matrix) at some point can be continued an-
alytically to the punctured Riemann sphere (punctured
at the poles of A(λ)). The fundamental solution, after a
closed contour γ on the punctured Riemann sphere, only
depend on the homotopy class of the contour. Therefore,
the fundamental solutions of a Fuchsian system define a
matrix representation of the fundamental group of the
punctured Riemann sphere. This representation is called
the monodromy group. The original question of Hilbert
was the inverse: can we always find a Fuchsian system
for a given monodromy group?

The subsequent developments resulted in the year 1957
in a negative answer to Hilberts twenty-first problem in
its full generality. However, a deep analysis of solvabil-
ity conditions produced many new analytical tools and
results.2

Later developments in mathematics and mathemati-
cal physics put Hilberts twenty-first problem in a much
broader context. It turned out that many problems in
pure or applied mathematics can be formulated in similar
ways as Hilberts original problem. The classical example
is the Wiener-Hopf method to solve partial differential
equations. In a similar context, applications in the the-
ory of integrable systems turned out to be particularly
fruitful.1 Those generalizations of Hilberts twenty-first
problem was named Riemann-Hilbert problem. The so-
lutions to many nonlinear integrable differential and dif-
ference equation may be formulated as a solution to a
(generalized) Riemann-Hilbert problem.

Random matrix theory (RMT) originally comes from
a completely different branch of physics. Random ma-
trices where first intensively studied in connection with
nuclear physics by Wigner in the 1950s. The underly-
ing assumption is that quantum mechanical spectra of

physical systems with many degrees of freedom may be-
have (at an appropriate scale) like the eigenvalues of a
matrix with random elements. One approach in theo-
retical physics was to view random matrix statistics as
the quantum analog to classical chaotic (NB: in contrast
to integrable) dynamical systems.3 More recent research
on random matrix theory has led to various applications
and connections to other fields of mathematics. Hitherto
unexpected links where made e.g. to number theory (dis-
tribution of the zeros of the Riemann zeta function)9 or
to the problem of perfect matching of a graph.11

More recently, the research on random matrix ensem-
bles have revealed further unexpected and possibly deep
connections to the theory of integrable system. Aspects
of this connection were discussed at the CRM conference
in Montreal in summer 2005.8 For example, gap probabil-
ities in the Unitary ensemble may be formulated (in the
appropriate scaling limit N → ∞) in terms of solutions
to integrable PDEs or Painlevé type of nonlinear ODEs.
As another example, the finite-N probabilities may be
mapped to solutions of discrete integrable models like
the Toda lattice.10

II. THE RIEMANN-HILBERT PROBLEM

The Riemann-Hilbert problem (RHP) in its general-
ized form can be formulated in the following way:
Let Γ be an oriented contour or a set of oriented con-
tours in the complex plane. The contours may be simple
or disconnected, or even self intersecting. The orientation
defines + and − sides of the contour in the usual way.
Suppose further that we have a map G from Γ into the
set of N × N invertible matrices. The Riemann-Hilbert
problem determined by the pair (Γ, G) consists in find-
ing the matrix-valued function Y (λ) with the following
properties:

• Y (λ) is analytic for λ ∈ C \ Γ

• Y+(λ) = Y−(λ)G(λ) for λ ∈ Γ
with Y±(λ) = limλ0→λ± Y (λ0)
and λ± is on the ± side of Γ.

• Y (λ) → 1 as λ →∞.

The last condition on the limit has to be stated more
precisely for a particular application. In connection with
random matrices, we often encounter different boundary
conditions. The crucial requirement is the “jump condi-
tion” along the contour Γ. An appropriate limit (e.g. at
infinity) reduce the number of solutions.
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The simplest example of an explicit solution to the
Riemann-Hilbert problem is the case N = 1. Taking the
logarithm, the jump-condition becomes additive and we
clearly have

log Y (z) =
∫

Γ

log G(λ)
λ− z

dλ

2πi
. (2)

There is a lot to say about the uniqueness of solution (2)
or its generalization to the matrix case. As indicated,
these questions are directly related to Hilberts 21st prob-
lem. However, I will not go into these details here but
instead discuss one application in random matrix theory.

III. A RHP FOR ORTHOGONAL
POLYNOMIALS

Orthogonal polynomials play a central role in the re-
cent developments of random matrix theory. In the fol-
lowing I will explain one basic result which is repeatedly
used: orthogonal polynomials appear as a solution to a
RHP with N = 2.

Given the following family of RHPs (Γ, G) with Γ = R
and n an integer:

• Yn analytic in C \ R
• Yn+ = Yn−G for z ∈ R
• Yn →

(
1 + O(z−1)

)
znσ3 as z →∞

where we denote the limit

znσ3 =
(

zn 0
0 z−n

)
(3)

and the jump-matrix is given by

G(x) =
(

1 w(x)
0 1

)
. (4)

The function w(x) is some weight function on the real
axis.

The unique solution to the above RHP can be written
in terms of orthogonal polynomials of w:

Yn =
(

πn Cπn

γn−1πn−1 γn−1Cπn−1

)
(5)

where πn are the monic orthogonal polynomials of w,∫
πn(x)πm(x)w(x) dx = −2πi δnmγ−1

n , and C is the
Cauchy transform:

Cπn(z) =
∫

Γ

πn(s)w(s)
s− z

ds

2πi
. (6)

Similar to the case of result (2) for the N = 1 RHP,
above solution for N = 2 can be proven formally by ele-
mentary means. I will not repeat the derivation here but

refer to introductory literature [5,12] for details. How-
ever, I will briefly comment on the uniqueness of the so-
lution: since the jump-matrix has det G = 1, we see that
detY must be analytic in the whole complex plane. Fur-
thermore, det Y → 1 as z → ∞ and we clearly have
detY = 1 in the entire complex plane, by the Liou-
ville theorem (every bound analytic function is a con-
stant). Therefore, Y is invertible everywhere. Suppose
Ỹ is another solution to the RHP. Then we can define
X = Ỹ Y −1. Along Γ we have

X− = Ỹ−Y −1
− = Ỹ+GG−1Y −1

+ = Ỹ+Y −1
+ (7)

and hence the matrix X is analytic across the Γ. Since
X → 1 as z → ∞, we again have X = 1 in the entire
complex plane and hence Y = Ỹ .

IV. ORTHOGONAL POLYNOMIALS AND RHP
IN RANDOM MATRIX THEORY

Let me briefly remind some basic results concerning
orthogonal polynomials. Let w(x) be a weight function
on the real axis and we will write dµ(x) = w(x)dx. We
require all moments to be finite, i.e.

∫
xndµ(x) < ∞.

The orthonormal polynomials for w(x) are defined as
∫

pn(x)pm(x) dµ(x) = δnm . (8)

pn are polynomials of degree n

pn(x) = anxn + an−1x
n−1 + . . . + a0 . (9)

The polynomials pn are unique and can be constructed
by the Gram-Schmidt orthogonalization procedure.

There is a very important three term recurrence rela-
tion for orthogonal polynomials. The polynomial xpn(x)
is clearly of degree n+1. Further, it is easy to see that it
must be a superposition of maximally three polynomials:

xpn(x) = bn+1pn+1(x) + cnpn(x) + bnpn−1(x) . (10)

The coefficients are given by

cn =
∫

xpn(x)2 dµ(x) , (11a)

bn =
∫

xpn(x)pn−1(x) dµ(x), for n > 0 , (11b)

b0 = 0 . (11c)

Using the three term recurrence relation (10), we im-
mediately find the Christoffel-Darboux formula for or-
thogonal polynomials:

(x− y)
N−1∑

j=0

pj(x)pj(y)

= bN (pN (x)pN−1(y)− pN−1(x)pN (y)) .

(12)
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Let me now turn to random matrix theory. For sim-
plicity, I will consider only the unitary ensemble with the
following measure in the space of N ×N complex hermi-
tian matrices

dµ(M) = Z−1
N e−trV (M)dM (13)

where V (x) is a polynomial of even degree and

dM = ΠN
j=1dMjjΠN

i 6=jdReMijdImMij . (14)

The probability measure (13) is invariant under unitary
transformations M → U†MU and therefore we can diag-
onalize and integrate out the “angle” variables to get a
measure on the eigenvalues λj

dµ(λ) = Z−1
N Πi<j(λi − λj)2 e−

∑
k V (λk) Πldλl

= PN (λ) dλ .
(15)

Further, it is clear that the term Πi<j(λi − λj)2 can be
written as a van der Monde determinant

Πi<j(λi − λj)2 =
∣∣λi−1

j

∣∣2 . (16)

The orthogonal polynomials {pn}n=0...N for the weight
function w(x) = e−V (x) form a complete set of basis vec-
tors. Therefore, we can add and subtract rows in the van
der Monde determinant to write the measure in terms of
orthogonal polynomials:

PN (λ) =
1

N !
|detM |2 (17)

where Mij = φi−1(λj) and

φn(λ) = pn(λ) e−V (λ)/2 (18)

Now, we have

| detM |2 = det MT M = det
N−1∑
n=0

φn(λi)φn(λj)

= det[KN (xi, xj)]1≤i,j≤N .

(19)

Due to orthogonality of φn, this kernel has the nice prop-
erties

∫
KN (x, x) dx = N ,

∫
KN (x, y)KN (y, z) dy = KN (x, z) .

(20)

Furthermore, Christoffel-Darboux (12) allows us to write
the kernel as

KN (x, y) = bN
φN (x)φN−1(y)− φN (y)φN−1(x)

x− y

KN (x, x) = bN [φ′N (x)φN−1(x)− φN (x)φ′N−1(x)] .
(21)

The m-point correlation functions are defined as

R
(m)
N (λ1, . . . , λm) =

N !
(N −m)!

∫
PN (λ)ΠN

j=m+1dλj .

(22)

Using (20), one shows that

R
(m)
N (λ1, . . . , λm) = det[KN (λi, λj)]1≤i,j≤m . (23)

Now it becomes clearer why the Riemann-Hilbert for-
mulation of the problem may be useful. Going back to
the RHP solution for orthogonal polynomials, (5), we see
that the kernel can be written as

KN (x, y) =
e−(V (x)+V (y))/2

2πi(x− y)
(0 1) Y −1

N (y)YN (x)
(

1
0

)

(24)
Solving the Riemann-Hilbert problem (4) will give us the
kernel for the matrix model. Particularly interesting are
universality questions in the limit of large random matri-
ces, N →∞. Using this approach, the universality ques-
tion of KN has been answered for an arbitrary polyno-
mial potential V of degree 2m. Upon appropriate rescal-
ing λ → N

1
2m λ, one obtains the sine-kernel in the scaling

limit N →∞ [5]:

KN → sin π(x− y)
π(x− y)

. (25)

Universality questions in RMT have motivated much
work on the large N asymptotics of orthogonal poly-
nomials. Considerable progress was made by Kuijlaars
et al. [7] and others using the the Riemann-Hilbert ap-
proach. Note also that the z → ∞ asymptotic solutions
of the RHP give valuable information about the orthog-
onal polynomials. From (5) we find for example

[Yn]12 = − kn

zn+1
+ O(

1
zn+2

) (26)

where kn =
∫

π2
n(x) dµ(x).
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