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Version abregee

Cette these est consaeea I'étude tleorique de la supraconducti&i haute
temperature critique, @ctrite comme un isolant de Mott dep Dans cette
optique, le modle t-J sur ieseau ca# est analys par les approches vari-
ationnelles et champ moyen. Laete est focalie sur la construction des
excitations et sur les projtes spectrales dans le cadre du conceptad
Anderson) de fonctions d’onde dite “resonating-valenceej (RVB). Le
mockle quantique de digres comme made pour la phase RVB des isolants
de Mott est aussi explér

Dans la premére partie de la #se, on analyse les fonctions de Green
dans la phase supraconductrickaide des fonctions d’onde variationnelles
pour le moele¢-J. Il est emonté que le poids spectral totale est dinénu
par une renormalisationegpendante de I'impulsion, et que la projection de
Gutzwiller produit une asyatrie particule-trou dans la renormalisation des
poids spectraux.

La deuxeme partie est consama I'analyse des fonctions de Green dans
la phase pseudogap des cupratd@ide d’'une approche SU(2) de champ
moyen al le parangtre d’ordre fluctue entre le supraconductéwave et
I' etat staggered-flux non-supraconducteur. Ceeteogdédit un spectre de
phota@emission avec un gap asgtnique qui interpole entre le gap supra-
conducteur cendr sur I'energie de Fermi et le gap asgtriqgue de létat
staggered-flux. Cette asytnie du gap change de signe aux poinisla

surface de Fermi croise la diagon@ler)-(m, 0).

Dans la derrére partie de la #se, on conskte les excitations de trous
et de vortex dans la phase liquide du ratedquantique de digres Rokhsar-
Kivelson sur éseau triangulaire. On montre que le mouvement d’un trou
lié & une excitation topologique est fortement contraint dudes effets
d’interférence.

Mots clefs: supraconductivéa haute tem@rature critique, resonating valence
bond, pseudogap, mekks sur éseauglectrons fortement calés, moeéle

t-J, Monte Carlo variationnel, fonction d’'onde de Gutzwillesplant de
Mott dope, mockle de dingres quantique






Abstract

This thesis is devoted to a theoretical study of high-teijpee superconduc-
tivity from the viewpoint of a doped Mott insulator. To thiad the square-
latticet-J model is analyzed by variational and mean-field approachus.
thesis focuses on the construction of excitations and octiseroperties
in the framework of Anderson’s concept of resonating-veéechond wave-
functions. The quantum dimer model as a toy model for thenatsog-
valence-bond phase of Mott insulators is also explored.

In the first part of the thesis, the single-particle Greeaisctions in the
superconducting phase are analyzed using Gutzwilleepteql variational
wavefunctions for the-J model. It is found that the overall spectral weight
is reduced by a momentum-dependent renormalization, atdhé projec-
tion produces a particle-hole asymmetry in the renormedinaof the spec-
tral weights.

The second part analyzes the Green'’s functions in the pgapdshase
of the cuprates within an SU(2) mean-field approach where ottoker
parameter fluctuates between thavave superconductor and the non-
superconducting staggered-flux state. The model predigtetemission
spectrum with an asymmetric gap structure interpolatiriggeen the super-
conducting gap centered at the Fermi energy and the asymrseiggered-
flux gap. This gap asymmetry changes sign at the “hot-spot&ravthe
Fermi surface crosses the diago(talr)-(, 0).

In the last part of the thesis, single hole and vortex exoiat in
the liquid phase of the triangular-lattice Rokhsar-Kivaelspantum dimer
model are considered. It is found that the motion of a holenddo a topo-
logical excitation is strongly constrained due to integfege effects.

Keywords: high-temperature superconductivity, resonating valdraed,
pseudogap, lattice models, strongly correlated electrensmodel, vari-
ational Monte Carlo, Gutzwiller-projected wavefunctiompéd Mott insu-
lator, quantum dimer model
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Chapter 1.

Introduction

1.1. A brief history of superconductivity

Superconductivity was first observed by Kammerlingh Onnekdill. When he cooled mer-
cury to the temperature of liquid helium at 4 Kelvin (-289), its resistivity dropped to an

unmeasurably small value. Subsequent experimental adsamere able to produce even
lower temperatures and it was found that mmosttalsare in fact superconductors at very low
temperature.
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Figure 1.1.: Critical temperature of some superconductors as a function of their {decovery [8].



2 Introduction

In 1957, Bardeen, Cooper, and Schrieffer (BCS) [1] proposed eostopic theory which
described the superconducting state as a superfluid ofdpeleetrons. In the BCS theory,
these so-calle@€ooper pairsof electrons are in a bound state due to the exchange ofdattic
vibration modes callegghonons The phonons induce an effective attraction between elec-
trons. Within BCS theory, all superconductors which were kmathis time could be well
understood.

The superconductors known at that time had relatively lowcet temperatures, above
which they are well-conducting metals. It came therefora ssrprise to the physics commu-
nity when in 1986, Bednorz and dMer [2] reported the discovery of a superconductor that
broke this rule. They found that the 1.3.Sr,CuQ, (LSCO) compound, a bad conductor at
higher temperatures, starts to be superconducting alr@a89 Kelvin. A few months later,
this T,. could be improved to spectacular 90 Kelvin in the similar YBGinpound and ex-
ceeded for the first time the boiling point of nitrogen (77 We).? The superconductivity at
relatively high temperature in metal-oxide compounds,chittiad previously been known as
electric insulators, indicated that a new class of matetald been discovered. This initiated
the field of research which is called high-temperature (monmentional) superconductivity
today.

In the 20 years following the discovery of the first high-tesrgiure superconductor, several
other compounds with even higher critical temperaturegwgnthesized. The highest critical
temperature under ambient pressure reported so far is 18%aKmercury-barium-thallium-
copper-oxide compound. All these chemically very compédacompounds share similar
structures. They are built from layers of copper-oxide @eetneir nameuprate3, separated
by layers of rare-earth or alkaline-metal salts.

Despite intense effort during the last 30 years, no unifyirepretical description of high-
temperature superconductivity has been found to date. thquie of theoretical approaches
and ideas were proposed, many were abandoned, others apetaagnor subject to contro-
versy. Starting for example from the viewpoint of strongretation physics (which | will
make more precise later), the high-temperature-supeustindy problem is very similar to
guantum chromodynamics at finite fermion density [3]. Unfoately, most if not all conven-
tional tools of theoretical physics are not applicable tchssystems.

In the meantime, empirical efforts have not been hinderetthéyack of theoretical under-
standing. Enormous quantities of experimental data argaéla today. The quest for an
understanding of these materials has been the driving lofmgshing experimental techniques
like photoemission spectroscopy or tunneling microscapart unprecedented accuracy and
reliability.

The recent developments in the research on high-temperatyrerconductivity indicate
that, apart from the high critical temperatufe the superconducting phase of the cuprates is

1The Nobel prize for the work of BCS was awarded in 1972.
2Bednorz and Mller received the Nobel prize for their discovery only omaylater, in 1987.
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rather conventional. The superconducting cuprates shangy properties with conventional
metallic superconductors. In contrast to this, ‘theomalous” normal stateabove the critical
temperature shows very unusual and surprising propertiswvindicate that a radically new
state of matter may have been discovered.

Apart from the fundamental scientific interest in these male we should not forget that
the research has been motivated over the decades by theamotachnological impact that
superconductivity at room temperature would undoubtediyelon our society. Lossless trans-
port of electric current is only one application, the po#isjbto create or measure magnetic
fields another. However, as the history of fundamental rebeshows, the most important
applications are rarely foreseen in advance.



4 Introduction

1.2. Phenomenology of high-temperature superconductors

In order to get a picture of the high-temperature supercotots (HTSC), let me introduce the
compound La ,Sr,CuQ, (LSCO) as an example. The chemical structure of this compound
is depicted in Fig. 1.2. All cuprates show a similar layergdcure with a plane of copper
atoms arranged on a rather perfect square lattice. Then@laygen atoms sit on the bonds
of the square lattice between the copper atoms. The differgorate materials are mainly
distinguished by the insulating crystal between the cojpéte layers. In the case of LSCO,
the interlayer structure is built up of lanthanum.

Cu ) Cu

LaO >

CuO2 O O
O

LaO Cu 'Cu

Figure 1.2.: Crystal structure of the LL&uO, compound. Left are copper-oxide and lanthanum layers
in the c-direction, right is a single copper-oxide layer. The inplane distancedagtw
copper atoms is roughly ~ b ~ 5A and the distance between copper-oxide layers is
c ~ 13A [9]. Upon doping, the lanthanum atoms are replaced by strontium orrbariu
atoms. Picture taken from [7].

By doping the out-of-plane crystal structure, i.e. by rejigcsome of these atoms, the
experimentalist can control the number of charge carriethé CuQ plane. In the case of
LSCO, doping can be achieved by replacing lanthanum by strondr barium atoms. De-
pending on the dopant atom, one may eithed electrons to the copper-oxide plane (electron
doping) orremoveelectrons from the copper-oxide plane (hole doping). Bo#ttebn and
hole doping have similar effects on the cuprates. Howendhis thesis, | am concentrating
on the hole-doped cuprate superconductors.

A typical experimental phase diagram of a hole-doped cemaperconductor as a func-
tion of temperature and doping is sketched in Fig. 1.3ha& filling (in absence of a dopant)
and below the ordering temperatufe ~ 325 K [10], the material is antiferromagnetially
ordered and insulating. As the hole-dopant concentrasiorcreased, the system goes through
the pseudogapphase and finally becomes superconducting. At small dopimg,super-
conducting transition temperature starts to rise and esaehmaximum abptimal doping
Then, the superconductivity vanishes again at a highemdopinside thissuperconducting
dome the material has all the well-known characteristics of gesconductor: zero electrical
resistivity, Meissner effect (expulsion of electromagnételds), etc. Cuprate superconduc-
tivity is of type I, i.e. a strong magnetic field produces tuwes inside the superconductor
and a sufficiently strong field can completely destroy theestgnductivity. At higher doping
(far in theoverdopedegion, above optimal doping) or at temperatures above@seedogap
temperaturel™, the material covers all aspects of a conventional metdl aigapless Fermi
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Figure 1.3.: A typical experimental phase diagram of the hole-doped cuprates. @ dsa#f filling,
an antiferromagnetic insulator is found with a Neel temperafureof several hundreds
of Kelvin. As holes are doped into the copper plane, a supercondudtiagsepappears
between 5% and 25% doping, optimal doping is reached around 17% in LSCO

surface and a finite resistivity. The nature of the pseudqigse appearing at intermediate
temperature (betweéh. and7™) in theunderdopegart of the phase diagram (below optimal
doping) is still under debate. Ongoing experiments arengryo characterize this phase. It
appears that the pseudogap phase is normal in the senseishabti superconducting. How-
ever, angle-resolved photoemission experiments show talbpagapped Fermi surface or
Fermi arcs This property is highly unusual and not observed in normetlats. For this rea-
son, the pseudogap phase was also catexhge metaby Anderson [11]. In Section 3.4 of
this thesis, | propose a theoretical model for this phase.

The electronic properties of the superconducting phasel&&iis an important subject of
this thesis. From the experimental point of view, it is nowlestablished that the symmetry
of the superconducting gap is netvave as it is for most conventional superconductors. The
superconducting order parameter Hasavesymmetry, i.e. the gap vanishes at a point in the
Brillouin zone (at thenodal poin} and the order parameter changes sign when the plane is
rotated by 90 degreés.

There are many more experimental aspects of high-tempersiyperconductivity. How-
ever, | do not want to go into greater detail at this point, ibtrioduce further aspects in due
course.

3The symmetry of the superconducting order parameter ledrtsiderable controversy among experimentalists
which was settled only a few years ago. The correct thealgpiediction, however, was given in the late
1980s (see Section 2.1).
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1.3. Doping a Mott insulator: physics of strongly interacting
electrons

The approaches and results of this thesis are rooted inrtregstoupling point of view. Based

on this view, the striking phenomena in cuprate supercawdsibiave their origin in the large

Coulomb repulsion between the charge carriers. This repulsnergy between the charge
carriers is much larger than their kinetic energy in thedsafid this makes traditional tools of
solid state theory, like band theory or perturbation in titeriaction strength, of little use. In

this section, | will introduce the strong-coupling appredc the problem of unconventional

superconductivity.

Let me first remind the electronic configuration of the atomthe CuQ plane (Fig. 1.2).
The copper ions on the square lattice havé'Ceharge with a single electron missing in the
3d-shell. The oxygen atoms on the bonds of the lattice carrmpglesinegative charge.

It was proposed by P. W. Anderson [12] that the electrons engrtially filled d-shell
of the copper atom are delocalized in a single band of thev#dsional solid. Due to the
large on-site Coulomb integral of thed,»_,» orbitals, these itinerant electrons on the same
site strongly interact and their quantum mechanics is watk@ximated by the single-band
Hubbard model (1.1) [13]. The nearest-neighbor hoppinegral¢ involves the intermediate
oxygen atom and is therefore rather smaéll,~ 12t. Further-neighbor hoppings are even
smaller due to the geometry of thig._,.-orbitals. The dopant removes electrons from the
copper site (Cti™-ions are formed) and holes are introduced into the Hubbardietn

U
Hy = =) i€y Cio + 5 3 clotioClztio (1.1)

ij,o io

1.3.1. Mott transition

In the limit U — oo, it is easy to see that the ground state(s) of the half-filledbtrérd
model (1.1) is localized with exactly one electron per site,

IMI) = ILicl, 0) . (1.2)

This limit is an example of a so-callddott insulator, in contrast to the more conventional
band insulator In a band insulator, the conduction electrons occupy a tetelp filled band
and the band gap prohibits conduction. In a Mott insulatothenother hand, the electrons
need to overcome the (large) Mott gépto create doubly occupied sites and to delocalize.

In the other limit,U — 0, the electrons are completely delocalized. E.g. in the oase
nearest-neighbor hopping, the electrons are in a band —2[cos k, + cos k. In this limit,
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the exact ground state is also known. It is the completedifermi sea,

IFs) = HEMC;;TCW . (1.3)

For intermediaté/, the ground state is much more complicated. It is believattttere is
a critical U, ~ 4t where theMott transition[14] from a conductor to a Mott insulator takes
place?

In the cuprates, the valence electrons occupy a half-fileatdband they would be con-
ducting if the Coulomb integrdl was moderate. However, the on-site Coulomb repulsion in
cuprates is so large that the undoped material is deep in dieiMsulating phasel{ ~ 12t).

1.3.2. From Hubbard to thet-J model

The Hubbard model in the limii/ > ¢ can be transformed to a low-energy effective model
in the subspace with less than two electrons per site<{ 2) [15]. Doubly occupied sites
cost a large energy of ordér and can be neglected at low temperature. One can find a
unitary transformatiory which block-diagonalizes the Hubbard model by eliminatimagrix
elements that mix singly occupied with doubly occupiedestdthis is the so-calleSchrieffer-
Wolff transformatiol, H¢// = e~ Hy;¢*. The unitary transformatiof can be found to any
order int/U. In the following, | will restrict myself to a model with uréfm nearest-neighbor
hopping. Without going through the details, the result wosel order int /U is [5, 15]:

Hef

ni<2 = —t Py Z CZTUCjan

(i,5),0

+ Epd Z [Ci+7166ioci5'ci+7'20 - Ci+T10ni5'Ci+T20']Pd + O(m) :
1,T1,72,0
where H¢//|,,. ., is the matrix acting only on the low-energy space of vectdthout doubly
occupied sitesi+7 denotes a site which is nearest neighbor toisitehe Gutzwiller projector
P, in (1.4) is needed to ensure that the hopping remains indhisehergy space. It is defined
as

Pd = Hl[l — niinﬁ] . (15)

4This discovery is due to Sir Nevil Francis Mott, who won theldgbprice for his work on strongly correlated
electrons in 1977, together with P. W. Anderson and J. vackFle
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The terms in the sum with, = =, of the effective model (1.4) gives an antiferromagnetic
interaction between the electron spins on nearest-neigiites:

t2 I n;n;
Hy = g Sl csclintinns — gt = T30080 8- "0 06)
e (i.g)
with J = % and$S = %ch&aaﬁca. The remaining term,
J T T T
H3 = Z Z [Cz‘—l—ﬂ-l,(‘fciacz‘&CiJrTz,cr - Ci+717gnia'ci+72,0] , (17)
7;77—1757—270'

is the so-calle@®-site-hopping term

The t-J mode] in which | am mainly interested here, is this effective mosghout the
3-site-hopping term:
nin;

4

Hyy=—1tP Z CZTUCjan + JZ[Si -5 — . (1.8)

(i) (id)

In the limit of vanishing dopingA — 0), it is clear that the Gutzwiller-projected hopping
term P;cfcP; is zero: every site is singly occupied and the hopping necigsreates a
doubly occupied site. In terms of the so-called Gutzwillgp@ximation (Section 2.1.3), the
Gutzwiller-projected hopping matrix element is reducedalfactor of orderz. In the same
sense,H; ~ xt?, and the 3-site-hopping term is negligible with respectitp ~ t? at low
doping. At half filling, the electrons are localized and timéyaemaining term is/.S; - S; with

J > 0. This is theantiferromagnetic Heisenberg moderhe antiferromagnetic interaction
between the electron spins can be understood intuitively the concept of virtual hopping:
Even though the electrons are localized, opposite spinsearest-neighbor sites are favored
because they have in principle the possibility to hop. Orother hand, the same spin state on
nearest-neighbor sites are forbidden to hop because oétimednic statistics of the electrons
(the Pauli principle).

Note that a perfect two-dimensional antiferromagneticseieberg model orders only at
zero temperatur€l{y=0). In cuprates, however, there is a weak interlayer cagplvhich
explains the observed ordering at finite temperature irethesterials.
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Thet-J model can conveniently be written in terms of Gutzwilleojected creation and
annihilation operators,

Co = Co[1l — ng] . (1.9)

This replaces the Gutzwiller projector in the Hamiltonidn8) and the hopping term of the
model is simply

> e (1.10)

(i.4).0

1.3.3. Zhang-Rice singlets

There is an alternative way to directly construct an effecti/ model for the Cu@ lay-

ers which was proposed by Zhang and Rice [16]. The undopedialateclearly an anti-
ferromagnet for thel-holes on the Cir-ions. This motivated Zhang-Rice to start from the
Heisenberg model. In the Zhang-Rice scenario, doping doesenmve a furthetl-electron

to create a Ctf -ion, but instead it removes;aelectron from the oxygen atom in the plane.
Hybridization favors a singlet superposition gfi-4ole delocalized on the four oxygen atoms
surrounding a Cif -ion and thed-hole of the central copper atom. Zhang-Rice constructed
Wannier states for such a singlet. pAole in this state can tunnel to a nearest-neighbor site
and form another singlet, but only if no singlet is alreadgugaying the site. This results in
the constrained hopping of holes in the antiferromagnetakground, precisely described by
thet-J model.
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1.4. Outline of this thesis

The remaining part of this thesis is organized in the follogwvay. In Chapter 2, | introduce
the theoretical tools which | use to study high-temperasugerconductivity and doped Mott
insulators. | give an introduction to Anderson’s variaabresonating-valence-bond construc-
tion and to the theoretical developments that emerged frohefson’s proposal. In the case
of the variational Monte Carlo method, some technical de@gveloped by myself are also
given.

In Chapter 3, | analyze the electronic properties of dopedt Msulators and | discuss
their experimental implications. In the first part, the gaheroperties of spectra within
a Gutzwiller-projected Hilbert space are studied. In theosd part, | analyze the spectral
properties of Gutzwiller-projected variational waveftions in the superconducting phase of
cuprates. In the last part of that chapter, | study the splgtoperties in the disordered phase
of the pseudogap region at the mean-field level.

Chapter 4 is devoted to a toy model for the resonating-vateooel liquid phase: the
guantum dimer model on the triangular lattice. This modelles an example of a topo-
logical phase and is therefore interesting on general gleuhhere are proposals and indica-
tions that the cuprate superconductors close to half filtray be in such a topological phase.
In this last chapter, | analyze dynamical properties of @lsirfnole in such a phase in the
presence and absence of a topological excitation.
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1.5. Notational conventions and abbreviations

In this thesis | use the following notations and conventions

() ¢ Is the annihilation operator for an electron with spiim the Wannier state localized
at the lattice site-;. c}a is the corresponding creation operator. These operatthosvfo
the usual anti-commutation relatiofis,,, c;,»} = 0 and{c;,, c}a,} = 0;;000. The spin
indexo takes value$ and| and the opposite spin tis written ass.

(i) cko Is the Fourier transforny,, = ﬁ > ; e~**7ic;, andL is the total number of lattice
sites.

(i) The electron-number operator is denotedry = cjacw andn; = Y _n,.
(iv) The vacuum state for electrons is denoted®yi.e.c;,|0) = 0.

(v) The hole-doping level (concentration of holes with mstpto half filling when there is
exactly one electron per site) of the cuprate layer is dehoyer = % It takes values

z € [0, 1]. To avoid confusion, | us&/ = 3, n; to denote the total number operator and
N for the total number of electrons.

(vi) (i, ) denotes pairs of indices on nearest-neighbor sites &ng)) denotes pairs of in-
dices on next-nearest neighbor sites of a lattice.

(vii) {oy,i =1,2,3} are the Pauli matrices:
01 0 — 1 0
o1 = , 09 = , 03 = .
i o) G o) o -1

(viii) “column-vectors” (Nx1-matrices) are written in kbfont. A superscript T denotes ma-
trix transposition:v” = (v, vs,...). The cartesian product may be written with a dot:
u-v= Zz U;V;.

(iX) The spin operator for electrons is defined$s- %Zaﬁ ch aascs. The raising operator
isSt=9""T= c¥cl.

(x) The symbok# is sometimes used as abbreviation for “number of”.

(xi) the curly brackets stand for the anti-commutatiér, B} = AB + BA. The square
brackets stand for the commutatidd, B] = AB — BA.

(xii) 1 use the physicist’s jargon for the word “finite”. A nuwer is finite if it is real and not
zero.

(xiii) The Gutzwiller-projection operator is denoted By = I1;[1 — n;n; .

(xiv) The projection operator to a given number of particess denoted by
_rt 21i(N—N)a
Py = [, dae .
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The following abbreviations are used in this thesis.

AF

antiferromagnet(-ic)

ARPES angle-resolved photoemission spectroscopy

BCS
FS
GA
HTSC
MC
QDM
QP
RK
RVB
sC
SF
VB
VBS
VMC

Bardeen-Cooper-Schrieffer

Fermi surface

Gutzwiller approximation
high-temperature superconductivity
Monte Carlo

guantum dimer model

guasiparticle

Rokhsar-Kivelson
resonating-valence-bond
superconductor / superconductivity
staggered-flux

valence bond

valence-bond-solid

variational Monte Carlo
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Chapter 2.

Resonating-valence-bonds: a variational
view on high-temperature
superconductivity

In the introductory Chapter 1, | have argued that there arel geasons to believe that many
phenomena of cuprate superconductors can be understdod wpulsive, large/ fermionic
Hubbard ort-J models (forU ~ 12t ort ~ 3.J). However, these strong-coupling models
are difficult to explore theoretically, because there is mals parameter which would allow
to expand around a known limit. For example, doping as snathpeter is not suitable:
Even a single mobile hole in the antiferromagnetic backgdointroduces a new degree of
freedom (the charge) and may affect the system in a nonpattue way. Unbiased numerical
approaches likexact diagonalizatioror guantum Monte Carlo methodse either bound to
very small clusters (even on modern computers) or suffen fiermionic sign problems [17].
In this thesis, | adopt a different approactvaiational one. Although this approach is biased
(by hopefully correct physical insight), it has the advaetaf being nonperturbative and can
be applied to large systems.

?

Figure 2.1.: An artist's view of geometric frustration: three classical spins with antifeagnetic
interaction on a triangle. Two of the spins minimize their energy by pointing up and
down, respectively. The third spin is frustrated because it cannot mintheziateraction
energy on the two bonds simultaneously.
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2.1. Anderson’s wavefunction

In the undoped case, the square-lattice Heisenberg modebisn to have a ground state
with antiferromagnetic long-rang order. However, thisaasion is not very robust. For ex-
ample, the Mermin-Wagner-Hohenberg theorem [18, 19, 2@Jien immediate destruction
of long-range order at finite temperature. Other effeces ¢lgometric frustration (e.g. on the
triangular lattice or by further-neighbor interactions thie square lattices; see Fig. 2.1) or
a mobile hole may destroy the antiferromagnetic grouncestat the year 1972, even be-
fore the discovery of HTSC, Anderson considered alterngreeind-state wavefunctions on
the square lattice which can compete with the Neel antifeagnet [21]. Anderson was in-
spired by L. Pauling’s work, who had successfully descrittvecchemical structure of benzene
molecules as quantum-mechanical superpositions of diftevalence-bond configurations
[hence the nameesonating-valence-bor@RVB); see Fig. 2.2]. Pauling had also applied these
ideas to valence electrons in solids [22]. After the discpwd HTSC, Anderson developed
the RVB idea further and adapted it to the case of the cupfaggs

Figure 2.2.: The double-bonds in benzene are not localized and may be pictured aantump-
mechanical superposition of two classical states. Such states where resoedting-
valence-bond§RVB) by L. Pauling.

Anderson was motivated by the fact that for an antiferronetigrHeisenberg model on an
unfrustrated lattice with coordination numbgithe Neel state has a variational energyL(aQE
per site. On the other hand, if we imagine a product state patrs of (AF-coupled) spins in
a singlet state, then a variational energy—égi per spin is obtained. For a chain € 1), the
singlet state is a better variational state than the Netd 5tAs we go to higher coordination
numbers, the Neel state becomes a better variational statderson proposed that such a
product state of spin singlets could be stabilized even jmdimensions by letting the singlet
bonds resonate between different sites.

More formally, we define

o — 1

(PR
i E[Cﬁcﬂ_cilcﬂ] (2.1)

lindeed, it is know from Bethe’s solution that the antiferammnetic spin chain has a singlet ground state [23,
24].
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the creation operator for a singlet on bofidj). A state in a “valence-bond” configuration
may be constructed by

IVB) = II;,;,bL|0) (2.2)

where (7, j) are pairs of sites whicleover the entire latticeand no site is repeated in the
product The last point is important, because if sites were repdatdte product, this would
create doubly occupied sites in term&eﬂlectronSpchL. Such states are not in the Hilbert
space of the Heisenberg Hamiltonian or, in terms of eleatnmodels, they cost a large energy
of orderU. There are many VB states possible on a given lattice anddbteting of them
may be formulated in terms of close packindgwafdcore dimer®n the lattice. Chapter 4 will
be devoted to the quantum dynamics of such dimer coveringse tiat the singlet-product
states corresponding to different close-packed dimerrauy® are not orthogonal in general.
Note also that the stat¥B) is a spin singlet, i.eS?,|VB) = 0.

A wavefunction with resonating singlets and no translal@ymmetry breaking (termed
spin liquidby Anderson) may be constructed in the following way:

IRVB) = P[> " a(r; — r)bl;]V?10) = Pa[Y " a(r; — 7j)cl el 1¥2)0) (2.3)

1,J .3

wherea(r) = a(r) + a(—r) and N is the (even) number of electrons on the lattiéé = L

is chosen for a spin wavefunction (half filling) amd < L for an electronic (doped) wave-
function. The sum in (2.3) creates spin singlets betweenitasr; andr; +r with probability
a(r) for all 7. The product produces states containghginglets. Those states which contain
doubly occupied sites are then removed by the Gutzwillejegtor, P; = IL[1 — n;n;].
|IRVB) is a superposition of all singlet-product states with boodupation probability:(r).

I do not want to go into the details of the classification orrgreenology of quantum spin
liquid states, but instead refer to the literature [59, @@t me just note that such spin states
(at half filling) are not characterized by a broken symmeng eonventional order parameter
(like e.g. the Neel state is). Spin liquid states are insttediacterized byopological order |
will illustrate this concept in the case of the quantum dimexdel.

Written in Fourier space, the RVB state (2.3) turns out to beutz@iller-projected BCS-
wavefunction at fixed particle number, as it can be easily $&an the following calculation,

’RVB> = Pd[z ClkCLTCT_kl]% ’0> X Pdpgez’“ akcLTCT—kl ‘())
k (2.4)
= PdP%Hk[l =+ ak’cLTcT_kl”(D X PdP%’BCS> .

2Also known in mathematics as tiperfect matching of a graph
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| have used the projection to a given number of electrdns, = fol da 2 iV=N)a and
ar = Y., a(r;)e”* the Fourier transform of the singlet distribution funetioln BCS

terminology [25],u = \/11+_a§ U = \/‘f—i_ai and|BCS) = y[u + vick; e’ 1/0).

Anderson’s proposal to understand high-temperature sapductors as a doped spin
liquid is very elegant and appealing. If the Gutzwillerjecied BCS wavefunction has particle-
hole mixing (i.e.0 < ui < 1), then superconductivity will naturally emerge from thenga
wavefunction, as holes are added. To understand this, demsie off-diagonal long-range
order parameter that characterizes a superconductirey[6t26],

q)'ic = }H&<Ciffcﬂﬁc}+rac}+r6> : (25)
From combinatorial arguments, known as Gutzwiller appr@tion (see Section 2.1.3), one
can understand that this quantity vanishes ﬂllgg]@ x x2<1>?j as dopingr goes to zero.CD?j is
the off-diagonal long-range order of the unprojected wawefion. The vanishing is due to
the Gutzwiller projector and is not a property of the wavetion before projection. On the
other hand, magnetic correlations of the form

(S7S%) (2.6)
are only weakly affected by the Gutzwiller projector nedf filing.

Indeed, it was found by Gros [27] and Yokoyarm@al. [28] in 1988 that a BCS wave-
function with ad-wave gap symmetry,
1 A(cos ky — cos k)

uy = ~[1+
k 2[ V/(cosk, + cosky, — p1)? + A?(cos k, — cos ky)?

], (2.7)

is a favored variational state of tihe/ model for a large range of doping. The energy gain of
this state is mainly due to the spin-exchange term as we ex@ac Anderson’s arguments.

It took many years until the experimental technique of amgiolved photoemission spec-
troscopy (ARPES) [29, 30] was accurate enough to confirm/thvave gap symmetry in the
superconducting phase of the cuprates. In fact, the firshbiguous experimental confirma-
tion came from phase sensitive measurements with Josephsgiions [31, 32]. Since these
early studies, the variational approach tothemodel has been refined and extended by many
research groups [33, 34, 35, 36] and today we enjoy a quitelsienvariational picture of
thet-J model and the cuprate superconductors within this framlewine main results were
summarized in recent review articles [3, 4, 5, 6]. In thedwihg chapters, | will remind some
of these results where necessary.
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2.1.1. (Re-)introduction of double occupancy

The RVB wavefunction (2.4) is a variational state for thé model. However, one may also
want to use this type of wavefunction to study the Hubbardehothere are two approaches
in the literature which allow to introduce doubly occupié@s and to extend this variational
approach to the Hubbard model.

In the first approach, one rotates the wavefunction backadihbbard model using the
inverse Schrieffer-Wolff transformation introduced inc8en 1.3.2:

IRVB,U) = ¢ #|RVB) = |RVB) + 5 S1|RVB) + ... (2.8)

Doubly occupied sites can be reintroduced to any desiredrand /U and small quantita-

tive changes of some matrix elements were reported for theates [27, 33]. However, no
gualitatively different conclusions are expected if we deep in the Mott-insulating phase
t< V.

An alternative approach is the so-callpdrtial-projection operatorP, instead of the
Gutzwiller projector [36]. P, has an additional variational parameteand the states with
doubly occupied sites are not completely suppressed bytreduced by a factar — g:

Such wavefunctions are particularly useful in the case t#rmediatel/, when the system
is in the vicinity of a Mott transition. The disadvantage wh&tudying superconductivity
in a doped Mott insulator is that partially projected wavedtions generally (super-)conduct
in the half-filled limit, z — 0. The possibility that such states are realized in the caprat
was proposed by R. Laughlin who called thgmssamer superconductof37, 38]. Note,
however, that due to the invertibility d@f,, it is easy to write down a Hamiltonian for which the
P,-“projected” mean-field state is an exact eigenstafais is not possible for the Gutzwiller
projectorP; = P,—, and the limitg — 0 is clearly not analytic.

In this thesis, | choose to work with the pure/ model without perturbative or explicit
inclusion of doubly occupied sites.

3Note that the terminology “partial projection” is unfortate, sinceP, is not a true projection operator (i.e.
P2+ P).
g 9
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2.1.2. Variational Monte Carlo method

The shift of problem from solving the full Hubbard Hamiltani (1.1) to working with vari-
ational wavefunctions of the J model has simplified our task. However, it is still formidabl
to make quantitative predictions. The local constraintlengented by the Gutzwiller projec-
tor P, is difficult to handle both analytically and numerically. i$hs expected, sinc€; in-
corporates the strong interaction between the electrotieinopper-oxide layer which makes
this problem so distinct from traditional mean-field thesror other weak-coupling expan-
sions of many-body physics. In this thesis, | mainly rely be approaches described in this
and the following sections.

The variational Monte Carlo method (VMC) [27, 28] is a numdrimel that allows to
compute the expectation value of an operator in a given nhaaly-wavefunction within small
error bars. Here, | apply it to electronic wavefunctions aritdi lattices, where it is highly
efficient: It allows to handle wavefunctions on large clustg to 500 sites within a reasonable
time frame of the order of days on modern computer procesgofsarticular advantage of
VMC is that it allows to implement the Gutzwiller constraint< 2 exactly.

A Markov-chain random walk is performed in tl$e-basis for a given wavefunction. This
allows to write the matrix element of an operator as an awetaken over the random walk,

WOlY) _ N~ Wl (a|Ofy) (o) {alOfw)
{¥l) > (W1 Z (W) {al)

(2.10)

The statesa) and|) are real-space spin states igenstates). The form (2.10) suggests a
discrete probability distribution on the states,

[(@]a)]
pla) = ; pla) >0; > pla 2.11
)= "oy 2 (e &1
Such a probability distribution can be generated by a randatk with transition probability
p(a) ()]

P(a — o) = min[l, ] = min][1, ]. (2.12)

{aly)

This transition probability satisfies the detailed balancedition and is known to generate
the equilibrium distributiorp(«) [17, 39]. The task is now to efficiently generate a new spin
configuration from a given one. | do this by picking a randote and exchange the spin or
hole on this site with one on a random neighboring site of thuaee lattice. The projection of
a fermionic wavefunction to a given electron configuratinar(-magnetic, withV; = N)) is
aN; x N; Slatter determinant

p(a)

(aly) oc detay; . (2.13)
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In the case of a mean-field wavefunction) = |RVB), the matrixa,; is precisely the
singlet-bond distribution function(r) which appeared in the definition of the RVB wave-
function (2.3):

CLZ'j = CL(’I"Z'T — le) s (214)

wherer;; andr;, are the positions of the up and down spins, respectivelfidistateéc). Note
that | need to choose a particular ordering of the sitesl . .. L, in order to uniquely define
the sign of(a|y). The advantage of exchanging particles to generate a randtkrbecomes
now apparent: The new position of an up spin amounts to reggacrow, a new position for a
down spin amounts to replacing a column in the madfjx Using well-known formulas from
linear algebra, one can efficiently calculate the new deteant in terms of the inverse matrix.
By storing and updating both the matrix and its inverse, one can greatly improve the speed
of the Monte Carlo (MC) algorithm, an idea due to Ceperley and ©&h¢40].

In the following, | will give an example where a MC step propss$o exchange an up spin
on siter;, with a hole on site-;,. The sites are ordered+ 1... L) and we need to keep track
of the sign change for the determinant due to the fermionieroatation. Leb,, = a(r;, — )
wherer,, are the positions of the down spins. The new matfpand its determinant after the
MC step are given by

- bj fori =i,
Y a; Otherwise.

~ (2.15)
QLG () 3 bl

det ;5

where# (i1, i2) is the number of particles between siiggindi,. The acceptance probability

of this step is then given by (2.12), simply using the ratiotloé determinants squared,
(det a;;/ det a;;)*. As already mentioned, it is therefore efficient to store apdateq;; as

well as its inverse matrifa'];; after every accepted MC step. The acceptance probabilities
for exchanging two spins is computed analogously.

The random walk explained in the last paragraph providesvgkaof statega) with
probability distributionp(a). The expectation value of an operator can now be computed
approximately,

(£|0[¢) (a|O) (@0]y)
= Pl ~ — (2.16)
oy~ 2P ey ¥ 2 T
where{a} denotes the generated MC sample. | estimate the error okglezation value by
its variance over different MC runs.

The generation of an MC sample for a given wavefunction istidal for all operator ex-
pectation values. The average over the MC sample (2.16)eVeEwneeds to be implemented
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for each operatof) that we are interested in. This is easiest for operatorsiwduie diagonal
in spin space, lik€&) = n;n; or O = S;S7 etc. For exampley;n;

(2.17)

(almingly) | 1 if r; andr; are occupied ina)
{aly) 0 otherwise

Hopping operators of the for® = c;cja are also straightforward to compute since this
is very similar to the MC steps explained in (2.15):

<Oé|cj¢cﬂ|¢> | ()Y a(ry —r)[aY,;  if v hasT-spin andr; is empty inja)
{aly ] 0 otherwise

(2.18)

where# (i, 7) is the number of occupied sites between s#edj, andr,, are the positions of
the | -spins in|a).

In this thesis, | also computaff-diagonalmatrix elements between a wavefunction pro-
jected to different particle numbers,

(N=2|cie;y [N) - (2.19)

I am assuming here a wavefunctipn where the particle number is fluctuating, did) =
Pxl). The main difficulty is to compute the correct normalizatadrthis expectation value.
It is easier to normalize it to the wavefunction wittgher particle number,

(N=2|cincy|N) = (N—2|cine; | @) 2.20
(N|N) =2 (Nla) @20

{a}

This matrix element is just the ratio between a determinatit ane row and one column
removedand the determinant. Using again linear algebra, | get

(N=2|circj) ) _ { la™!];; if r; hasT-spin andr; has|-spinin|a) , (2.21)

(N|a) 0 otherwise

In order to compute the same expectation value with nora@bia to the wavefunction with
lower particle number, | need to sample the wavefunctién 2) instead,

(NlelychIN=2) o (Nlelch 1)
(N—2[N—2) =) (N—2l&) (2.22)

{a}’

In this case, the matrix element is the ratio between a daterhwith one row and one
columnadded and the determinant. To compute this, | expand the detamhin the numer-
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ator and get

<N|c}lcj.T|a) ) Yamalri —ra)a(r, —r;)[a” ], if |a) has a hole at; andr;
(N=2]a) ] 0 otherwise
(2.23)

The correctly normalized expectation value is then giventh®y product of these matrix
element$

_ (N=2Jeinc;y [N) (Nlejych[N-2)

VN)  (N-2[N-2) (2.24)

(N=2|circj |[N)
\/N|N WN—2[N—2)

Finally, let me note that one can greatly reduce the MC eraws lon these expectation
values or reduce the simulation time by taking advantagatb€é symmetries. For example,
using the translational invariance of the wavefunctioran evrite (n;n;) = 1 > PitgNijtq)
which providesl independent measurements in a single MC walk.

In conclusion, variational Monte Carlo is a numerical metlddch allows to compute
various static correlations in a given wavefunction witkimall error bars. In Chapter 3, I will
present and discuss new results that | obtained within th€\ivkthod.

4This expectation value may be used as a superconductingmacdameter. | will discuss it in the next chapter
in more detail. As a by-product of this computation, one chtaim the numbelm which is rele-
vant for understanding the particle-number renormaliratiy the Gutzwiller projector in a grand-canonical
wavefunction [41].
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2.1.3. Gutzwiller approximation

Although VMC provides a scheme to compute static corratatia Gutzwiller-projected RVB
wavefunctions to a high precision, it is still a computatiiy demanding numerical tool.
Furthermore, VMC is not able to give amlynamicalor temperature dependeimtformation.
For this reason, we may resort to an analytical tool for RVBefanctions: the Gutzwiller
approximation (GA) [5, 26].

The GA replaces the Gutzwiller projector in the expectatialues by a renormalization
with a statistical weight factor. Let),) be an unprojected mean-field wavefunction containing
states with doubly occupied sites. Using GA, we write theeexgtion value of an operatar
as

(V0| Py O Pyl|tbo) ~ o (10| Oltho)
(tho| Paltbo) (tholtho)
The Gutzwiller renormalization factagy, for the operatoiO is obtained by comparing the

dimension of the Hilbert space contributing to the processehe Gutzwiller-projected and
the unprojected wavefunction, respectively.

(2.25)

Consider for example the hopping operatbe= chch. In the projected Hilbert space, the
probability for such a hopping process is

~ (1= i) (1 — ) (2.26)

wheren; = (0| P;in; Pilibo). On the other hand, in the unprojected Hilbert space, theesam
probability is

~ \/ﬁgT(l — ngp)ng (1 —nd,) (2.27)

with 7ig, = (¢o|nat|the). The Gutzwiller factor is then written as

_ V(= ngnig (1 —ny)
V(= )k (1= af,)
Considering homogenous and non-magnetic wavefunctions<(7,, = %; which is the case

for the wavefunctions considered in this thesis) and assgrhiatn; = 7!, we obtain the
well-known result

G (2.28)

o l-n 2
S 1-n/2 14x°

gt (2.29)

Note thatg, renormalizes all square operators like as well as operators of the forec,,
like (2.5) or (2.19). The Gutzwiller approximation in a gdacanonical wavefunction with
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fluctuating particle number is more complicated and becqmaescularly problematic in the
half-filled limit where the conditiom = n° requires careful inspection [5, 41, 42, 43, 44].

The Gutzwiller renormalization factor for the spin-excgartermO = S, - S; can be
computed in a similar way. Fd; S, the probability for processes in the projected space is

~ /TG T (2.30)
and for the unprojected space it is

~ g (1 —nd)nd (1 —ng). (2.31)
For a wavefunction with spin-rotation symmets;S? has clearly the same renormalization
factor. Under the same assumptions as before, the renaataf factor for the spin-exchange
term is given by

Vi G Ty 1 4 (2.32)

gs = = —0 = o = — .
n?l(l —n?i)n?i(l —n%) (1—-n/2)2  (1+x)?

The Gutzwiller approximation (or more refined versions psée e.g. Refs. [42, 43, 45])
may now be used to compute the same static correlations asi¥liile to compute exactly.
A more advanced application of the Gutzwiller approximatie the so-calledenormalized
mean-field theoryRMFT) of thet-J model [26] where the Gutzwiller projectors in the/
Hamiltonian are directly replaced by Gutzwiller-renoriration factors,

nin;

Hgmer = — it Z clyCjo + 957 Z[Sz - S — 1

(i) (i3)

]. (2.33)

As one is working in the unprojected Hilbert space now, thelehcan be treated by conven-
tional means, e.g. by a self-consistent mean-field decogipience the name RMFT).



Resonating-valence-bonds: a variational view on high-teperature
26 superconductivity

2.2. Quantum dimer models

2.2.1. Introduction

The quantum dimer model (QDM) on the triangular lattice isidhfer approach that | use in
this thesis. The aim of QDMs is to consider low-energy effectnodels for spiné- antiferro-
magnets. The usual starting point for calculations withsldeberg systems are the eigenstates
of theS? operators. However, as | discussed earlier in this chajteler certain circumstances
(like geometric frustration or doping) this may not be thetbsarting point. An alternative

to the S* eigenstates is provided by thralence bondtates (see Section 2.1), as proposed by
Anderson [12, 46, 47].

After Anderson’s publication on the cuprates in 1987 [1BE tesearch on RVB theory
split into two branches. The first direction was mainly mated by the observation that a
projectedd-wave superconductor is the most competitive variatiotetesfor thet-J model
on the square lattice [27, 28]. Thewave superconductor has gapless points in the spec-
trum (nodal points) and the singlet amplitudg = Z—’; is not analytic at these nodal points.
The corresponding amplitudér) is expected to be long-range and so are various correlation
functions [48, 49]. This line of research is sometimes sunmad under the name alflge-
braic spin liquids The second branch of research considered RVB wavefursotvbich have
exponentially short-range singlet bonds, in particulaly orearest-neighbor valence bonds,
a(rnn) = £1 anda(r)-~o = 0. This second type of RVB wavefunctions can be investigated
with the help of quantum dimer models.

Figure 2.3.: Two examples of short-range (nearest-neighbor) close-packed dawenings of a square
lattice.

A short-range valence-bond spin state of the ﬁ)fm,j)bmm may be defined by pairing
nearest-neighbor sites on a lattice (paired sites = dinb@id; bars in Fig. 2.3). We call such
a configuration aclose-packed covering of a lattice by hardcore dimet€lose-packed”,
because we do not allow empty sites (= holes or monomers) laadicore”, because two
dimers are not allowed to cover the same lattice site. Thespie corresponding to a dimer

®The operatob;; = Js[ci cj1 — cijc;) ] was introduced in Section 2.1.
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coveringc is

) = I jyecbl;10) (2.34)

where the product is over all pairs of sitg@sj) which are connected by a dimerdn These
states are normalizedy.|:.) = 1, but not orthogonal in general. The relation between two
dimer coverings can be characterized by thensition graph i.e. their superposition on
the lattice. The transition graph of the dimer coveringsio B.3 is shown in Fig. 2.4. Itis
obvious that the transition graph of two close-packed ditogerings consists of closed loops.
One can show [50] that the overlap between the corresposgingstates of two close-packed
dimer coverings: andc is related to their transition graph by

(We|ther) = 22270 (2.35)

where the sum is over all loopsin the transition graph ang is the length (number of sites)
of the loop.

Figure 2.4.: The transition graph for the dimer coverings shown in Fig. 2.3. For claskqu dimers,
the transition graph consists of closed non-intersecting loops on the lattice.

The dimension of the singlet subspace fospins ism ~ 2V asN — oo [51].

The number of dimer coverings on a large square lattice Witlites i$ e N ~ (1.339)N [72].
We see that the space of nearest-neighbor valence-bond (&} 3s considerably smaller
than the singlet subspace. Using this valence-bond bastgiruct a meaningful low-energy
effective Hamiltonian is therefore a strong statement ats@uspin model (much stronger than
the restriction to the singlet sector). A family of spin midehich have valence-bond states
as exact eigenstates were constructed by Klein [52]. Horvéwve Klein models have com-
plicated interactions and seem relatively far from a sinijgdésenberg model on the square or
triangular lattice. One may still hope that frustratiorraatuced by further-neighbor interac-
tions, lattice distortions, or weak hole doping stabili¥#s or RVB-type states.

A realistic spin model which may possess an RVB ground statiee strongly frustrated
Kagone latticeantiferromagnet [53, 54]. The recent discovenHarbertsmithite a material
believed to be described by an almost perfect Heisenbeifgi@omagnet on the Kagoenat-
tice, has renewed the interest in this model [55]. Howevemfrecent variational calculations,

6G=1"2_-3"2452_  jsCatalan's constant
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the RVB ground state is believed to be of algebraic type with long-range singlets [56].
Note that it is still far from established if the proposedeteaptures the true nature of the
Kagone Heisenberg system.

Apart from their usefulness to illustrate fundamental tiedoal concepts, proposals have
been made to engineer QDMs in mesoscopic devices with the dfelosephson junc-
tions. An interesting application of such devices would aeltftolerant g-bits in quantum
computing [57].

2.2.2. Topological degeneracy and topological order

A reason for the interest in quantum dimer models is theiacayp to illustrate the relatively
novel concept ofopological order Traditionally, the different phases of matter are charac-
terized in terms of local order parameters. This viewpgineered by Landau, has been
extremely successful in many branches of physics (e.g.ermsetl matter, statistical physics,
elementary particles, etc.) and forms the basis of the yhebrritical phenomena [58].
However, there are examples of phases which cannot by ¢bersd by a local order pa-
rameter. The states which appear in the fractional quantafhdystem are such examples.
These phases are generally liquid states with gapped gaoiga In the absence of a local
order parameter, the phase may be characterizéddmjogical orderas it was suggested by
Wen [59, 60]. Apart from the fractional quantum Hall system,topological phase has been
experimentally realized and unambiguously identified ildsstate physics. Quantum dimer
models are reasonably close to realistic spin systemseiatively simple to solve and, most
importantly, topological order can rigourously be showrexist in some cases. QDMs are
therefore highly interestingpy modeldo study these topological phases in a wider context of
solid state physics.

One characteristic of a topologically ordered phase is tiatground state degeneracy
depends on the genus of the underlying space on which thelnsodefined (the model on
e.g. a sphere, torus, cylinder, etc. has a different numbdegenerate ground states) [61,
62]. To have topological order, one requires furthermoas (I the degenerate ground states
are all orthogonal and (ii) the ground-state expectatidaevaf any local order parameter is
identical in each topological sector (i.e. not only the Héonian, but no local order at all can
distinguish between the degenerate ground states) [48, 63]
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2.2.3. The square-lattice Rokhsar-Kivelson quantum dimer model

The quantum dimer model (QDM) was first formulated by Rokhsdrtaivelson (RK) in their
seminal work of 1988 [64]. In this model, the Hilbert spacspmnned by dimer coverings
which are defined to be orthogonal. Such orthogonal statgsfonaally be constructed for
spin models, but here | leave out these details and instéadteethe original work. Let
denote a (classical) dimer covering. The correspondintpvée satisfies

{e|d) = O - (2.36)

The Hamiltonian in this Hilbert space is defined as

Hee= Y —JID)(0+ 00T +o| DD+ 000, (2.37)

plaquettes

The operator

=)0+ m(al, (2.38)

acting on a plaquette (elementary square) of the latticarme zero if the plaquette has no
parallel dimers; if the plaquette has parallel dimers, ttiezy are rotated by 90 degrees (it
“flips” the plaquette). The operator

=)l + (0| (2.39)

returns zero if there are no parallel dimers on the plaquattid it acts as identity on pla-
guettes with parallel dimers (the plaquette is “flippable’s a result, the operator in (2.37)
proportional tov counts the number of flippable plaquettes.

The physical motivation behind the model (2.37) in the freumk of Anderson’s RVB
construction is the following [64, 65]: a dimer represemis electrons in a real-space Cooper
pair. These “pre-formed” pairs may or may not condense. dérctbse-packed limit, when all
sites are occupied by a dimer, the system is insulating eltiimers are in a liquid phase, it is
expected to capture the pseodogap phase of the cupratealt@imative possibility is that the
dimers order and form a crystal. When the density of dimersdsced and unpaired sites are
introduces, then the system becomes conducting. It mayeme superconducting if the
pairs condense.

At the RK pointin parameter space, defined by= v > 0, the ground state of (2.37)
is known exactly. It is the prototype of a short-range RVB\YBRwavefunction: the equal-
weight superposition of all dimer coverings

ISRVB) = ¢§V_D > e) (2.40)
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where N is the total number of coverings. A formal proof may be givgmioting that the
RK Hamiltonian (2.37) can be written as a sum of (non-comng)tprojection operators,

Hrk, j=v = JV?2 Z Pa (2.41)
plaquettes
where
P = —=[10) - (0]l = (1] (2.42)

projects to the subspace with parallel dimers on the plaggeperposed with a phase shift
The eigenvalues of a sum of projectors are clearly non-iegaipplied to the statésRVB),
these projectors all give zero which establishes|8RWB) is a ground state dffrk ;.. There
are ground state degeneracies, but | defer their discussitme triangular-lattice quantum
dimer model.

There is a lot more to say about the square-lattice quantumerdmodel. | will restrict
here to some key results only. While very little is known abinite-temperature properties,
we have a relatively complete picture of the zero-tempeeafuv phase diagram. In the
limit £ — —oo, the ground state is a maximally flippable state, the sedalblumnarstate
(Fig. 2.5a). In the other limit; — +oo, the ground state has the minimal number of flippable
plaquettes, the so-callestaggeredstate (Fig. 2.5¢). The ground states for intermediate

a) b) c)

Figure 2.5.: a) Columnar dimer state’ [~ —oc], b) plaguette phas®[6.J < v < J], and c) staggered
dimer stateg > J].

values of are only known for finite lattices from quantum and Greenfsction Monte Carlo
simulations, exact diagonalization studies [66, 67, 688 mapping to field theories close to
the RK point [69, 70, 71]. These studies suggest an interrteegiaquette phaséor 0.6 <

% < 1 where parallel dimers resonate on one out of four plaquéfigs 2.5b).
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2.2.4. Static and dynamical correlation functions at Rokhsar-Kivelson
points

The very special form of the ground state at the RK point as aalegeight superposition of
all dimer coverings facilitates the computation of certa@mo-temperature correlation func-
tions. For example, the static correlations for an openatoch is diagonal in the dimer basis
is

1
(sRVB|O|sRVB) = oA > (o) = oA ZO (2.43)

c,c!

This is simply a correlation function in the classical stial mechanics of dimer coverings
where all coverings have identical weight.

The classical dimer problem on the square lattice has bdeadsexactly [72, 73], e.qg.
the dimer-dimer correlation functions are known. For theasg lattice, the dimer correla-
tion functions decay algebraically at large distance. Tnes further support to the idea
that the RK point is a quantum critical point between two oedephases [74]. On field-
theoretic grounds, one expects to find gapless excitatiossich a phase. This expectation
can be proven to be exact [64, 75]. These results are, howaigappointing from the point
of view of a topological RVB liquid. Despite its liquid chartgr and short valence bonds, the
square lattice QDM does not provide an example of such aogpzal phase, at least in its
simplest form. For this reason, the search for topologitalses concentrated on QDMs on
non-bipartite lattices, in particular on the triangulatitee which | will consider next.

Due to the special form of the Hamiltonian (2.37) at the RK pama sum of projectors,
the dynamical correlation functions in imaginary time camiapped to correlation functions
in a classical stochastic process. These correlationifurectan then be computed efficiently
with classical Monte Carlo algorithms [69, 76, 77, 78, 93].
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2.2.5. The triangular-lattice Rokhsar-Kivelson quantum dimer model
and topological sectors

Figure 2.6.: A typical dimer covering of the triangular lattice.

Figure 2.7.: Crystalline phases on the triangular lattice. Left: columnar state with maximal mwohbe
flippable plaquettes fok — —oco. Right: staggered state with no flippable plaquettes for

v

Analogously to the square-lattice QDM, the model can be ddfon the triangular (or any
other) lattice. A typical dimer covering on the triangulattice is given in Fig. 2.6. Again,
we define a minimal quantum Hamiltonian on the space spanpatieodimer coverings,
Eq. (2.44). The first term in the Hamiltonian flips paralleindirs on each plaquette of the
lattice, the second one counts the plaquettes with pamdileérs. The plaguettes on this
lattice are three types of rhombi: right-, up-, and leftryimig.

Hex = Y —JIS WA+ 1870 |+ oll 7))+ 187) (A7) (2.44)

20,

Similar to the square lattice, one can prove that the grotaig st the RK point.[ = v)
is given by the analog sRVB wavefunction (2.40). The groutadesfor 4 — —oo and
% — oo are again crystalline phases, columnar in the first limit staggered in the second
(Fig. 2.7). An intermediate ordered phase with large urit(caristened 4/12 x v/12-phase”
by Moessner and Sondhi) was found numerically in the vigiaftv ~ 0 [79, 80].
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Figure 2.8.: A dimer covering on & x 4 lattice with periodic boundary conditions in both directions.

The simple closed path winds once around the torus and defines the opetatos
(_1)# of dimers intersectin@.

Let us briefly discuss an important symmetry of this model. Staer a particular dimer
covering on, say, a torus (periodic boundary conditionsoitihlspace directions). Let us draw
a simple closed path which winds once around the torus and which does not crossdat
sites (Fig. 2.8). Consider the number of diméfsthat intersect the path. The operator

vp = (=1 (2.45)

commutes with the Hamiltonian (2.44) and represents thezed conserved quantity. This
is easy to understand since a flipping process of the Harallocan change the number of
dimers intersecting@ in Fig. 2.8 by two only.

Are there as many independent conserved quantitiess there are closed path8 The
answer is of course no. Once a closed patis chosen, it is easy to see that deforming it
continuously (i.e. by gluing closed paths which are topmally trivial) only changes the sign
of the operatorr:

Vror = (_1)# of sites enclosed by’ Ur . (2.46)
As a result, we see that there are as many independent cedsguantities’ as there are
nontrivial closed paths for the topological space on whighdimer model is defined. In the
case of a torus, there are two such paths. On a sphere tharersggon a cylinder one, etc.
The eigenspaces of the operatprare calledopological sectorsThe triangular-lattice QDM
on a torus has four topological sectors.

The presence of topological sectors gives us importantnmétion about the ground state
degeneracy at the RK point. For the triangular QDM on the totlus SRVB ground-state
wavefunction (2.40) can be replaced by four orthogonal awkderate ground states,

ISRVB, i) = > ey, (2.47)

1
VN L

where the sum goes only over the basis vectors spanning podotpcal sectori. This
degeneracy is one property of a topologically ordered phbk®vever, it is not a sufficient
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condition, one also has to show that all other correlatioesradependent of the sector. At
the RK point, analytical methods are available to computectireelation functions of the
triangular-lattice QDM and topological order has been proto exist [63, 79]. Furthermore,
a finite correlation length for dimer-dimer correlations fieen found, which fits well into the
phenomenology of a topological liquid. Efficient Monte Cam@thods can be used to study
excitations and a gapped spectrum was found [76, 77]. Mm@vied numerical techniques
have shown that the ground state is in a topological phassofoe extended parameter range
0.8 5 % < 1. For% > 1, the staggered phase immediately sets in [80].

2.2.6. Topological excitations in the dimer liquid

In the last section, | have shown that the ground state irojp@dgical phase of the triangular-
lattice QDM is relatively well known. At this point, the nall question arises about the
excitations in this state. The exact low-lying eigenstatesnot known, but can we understand
them at least variationally? Read and Chakraborty [81] and FK§8&] have argued that the
gapped excitation of such a liquid must beéopological defecti.e. a twist in the phase of
the ground state wavefunctidnindeed, this nicely fits in with the field-theoretic scenasfo
electron fractionalization in the pseudogap phase of tipeatas by Senthil and Fisher [85].
In the Senthil-Fisher proposal, the physical electrortsjptito a spin% and a spinless charge
degree of freedom (the spinon and the holon) which interach discrete Zgauge field. This
is the analog to one-dimensional models where spin-chagration is known to occur [24].
Consider now the topological dimer liquid as an effective giddr such a Z lattice gauge
theory in two dimensions (in itdeconfined phasehere the fractionalization actually takes
place [74, 86]). In the dimer model, the spinon mass is asdumée infinite because this
excitation would break a dimer. Apart from the holon examat which may be mimicked by
introducingmonomersnto the dimer model, there is only the gauge degree of freelddt.
The massive excitation in a pure gauge theory without méélels is a vortex. The vortex in
the Z gauge theory is the analog to the topological defect in thé&/QDhis Z,-vortex was
baptizedvisonby Senthil-Fisher. | will use the same terminology for thendr analog.

The vison in the QDM is constructed in the following way [63&, B1]. Consider the
pathI" that we used to construct the topological sectors, but nowitate it on a plaquette
(Fig. 2.9). Of course, on a compact surface there is alwags@wl end of the path. This open
path is the precise analog to the string used by Dirac to nactshe magnetic monopole [87].
For a single monopole, the Dirac string has to go to infinityt¢oterminate at the boundary,
for a finite system). On a compact space, monopoles can ordyieypairs.

‘It is interesting to keep in mind a historical motivation tbe topological excitation: Read and Chakraborty
constructed this excitation for the short-range RVB stata square lattice. Marshall’s sign rule [83] for the
ground state of a bipartite Heisenberg model [46, 84] in tlesgnce of a single hole naturally calls for such
a phase twist in the wavefunction.
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Figure 2.9.: The vison-string",, defines the vison operatdf, = (—1)# dimersintersecting.  The opera-
tor V. lives on the dual lattice (plaguettes).

The vison operator is defined as

Vx — (_1># dimers intersecting'; (2.48)

wherel', is an open path starting at plaqueiteand going to a reference plaquette. The
location of the reference plaquette depends on the bourdengition of the system (it is at
the boundary for a finite system, at infinity for the infinitessgm, or some arbitrary plaguette
for a compact system). The corresponding two-vison opgrato

does not depend on the boundary conditions. Furthermasggain obvious that a continuous
deformation of the patlv, ,,, keeping the endpoints andy fixed, only changes the sign of
the operator by the parity of the number of sites crossed,

Vi (2.50)

_ (_ 1)# of sites betweei andI”/ 174
(=)

l—‘(ﬂv«,y) :

Itis clear that there is an arbitrariness in the sign of tlsewioperator for each position on
the dual latticer. This arbitrariness can be removed by choosing a referenuer ¢overing
and multiplying the vison operator in definition (2.48) by tborresponding value in the ref-
erence state [76]. In this way, the vison operatpis displaying the parity of the number of
loops in the overlap graph between the dimer covering andeteeence covering that wrap
aroundz. The choice of a reference covering may be cdiieidg a Z gauge in analogy with
the corresponding lattice gauge theory.

The vison operator creates a state which has the physicpepies we expect from a
vortex. Suppose we break a dimer located far away from thenwisto two spinons. Then
we move one of the spinons in a large circle around the visaragranging the dimers with
local moves. After the rearrangement, we pair up the twomygragain into a dimer. During
this process, a new loop in the overlap graph between thesst&fore and after the move is
created and the wavefunction acquires a sign. For a systataingng many visons, the sign
only changes if there is an odd number of visons inside thobecir
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The state created by applying the vison operator to the grstate,
lvison z) = V,.|SRVB), (2.51)

is not a true eigenstate of the RK Hamiltonian. However, itrth@gonal to the ground state
and has the desired properties of a vortex. To obtain an exaxtation, the variational
state (2.51) should be modified in the vicinity of the visomtee x. However, the global
properties of this wavefunction are correct. An importamihpis that such aisonlikeexci-
tation cannot be deformed to a local (non-visonlike) ex@taby any local rearrangement of
dimers. The energy of both types of excitations (non-vigen&nd visonlike) can be probed
at the RK point by computing the appropriate dynamical catreh functions with classical
Monte Carlo [69]. It was found by Ivanov that the gap to viskalexcitations is smaller than
the one to non-visonlike excitations [76]. The obtainedrigap is~ 0.1v, in accordance
with earlier predictions [57], and it was recently confirmedRef. [77].

2.2.7. Doping quantum dimer models

In the context of the RVB construction, it is very interegtito consider the other degrees of
freedom of the £ gauge theory: the spinon and the holon. Is the original tictuiof RK
correct and do additional holons lead to a condensed supaucting state?

There has recently been renewed interest in quantum diroeaomer models [88, 89,
90, 91, 92, 93]. Let me just note that two test-monomers aneddo be confined in the
square-lattice model. However, they are indeed found toeoenfined in the liquid phase of
the triangular-lattice QDM [88, 79]. Introducing dynamiiteles with the simplest hopping
process generically leads to phase separation betweetaling and liquid regions. Inter-
estingly, a uniform superfluid phase was found on the tritardattice in some region of the
RVB phasep < J [92].

The topological sectors for a quantum dimer model can stildbfined in the presence
of static holes. The operatof, Eq. (2.45), can be defined as before, but the effect of a
continuous deformation of the pathneeds to be adapted. As a consequence, topological
defects are present in the system. Energetic considesdtiothe corresponding spin models
suggest that static holes may form bound states with a vorteame cases [81, 84].

Vortex excitations in the presence of mobile holes posenieehdifficulties. As soon as
the hole is mobile, the topological sectors get mixed by §radhics and - is not conserved
anymore. As a consequence, it is difficult to define topolalgitefects in such a situation.
However, progress can be made in the case of a small hoppiptitaade of the hole. The
dispersion of a slow hole is strongly affected by the presari@ bound vortex [93], as | will
show in Chapter 4.



Chapter 3.

Strongly correlated superconductors and
their electronic properties

3.1. Introduction

In Chapter 2, | have introduced several techniques which eamskd to attack the difficult
problem of doped Mott insulators. In this chapter, | analftze problem in the context of
the experimental probe of angle-resolved photoemissientspscopy (ARPES). | apply and
extend these theoretical techniques, in order to make @ssgn the understanding of the
spectral properties in the framework Anderson’s RVB apg@ihda doped Mott insulators.

The studies starting from Anderson’s wavefunctions arenisically variational. It may
therefore seem difficult to make statements about spectrpkpties (i.e. about excitations) in
such a variational framework. However, in this thesis | anintyanterested in the properties
of low-lying excitations At low temperature, the experimentally accessible prigeiare
dominated by such excitations. If translation in space ignarsetry of the Hamiltonian, we
may construct variational wavefunctions with a given motaenand minimize its energy.
The result is a genuine low-lying variational excitatiors (ang as it is orthogonal to the
variational ground state).

3.1.1. Key experimental technique: angle-resolved photoemission
spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is parerental technique which has
been developed to a high perfection during the last 20 y&®s30]. In the early years of
ARPES, not all experimental results were reproducible. Hewnethe intense effort of the
community has improved methods and sample quality to andsgire degree. The popu-
larity of this technique, which is now used by many reseandugs around the world, is
due to its ability to provide momentum-resolved informatabout the electronic excitations
in the solid. Furthermore, ARPES is particularly approgritd study layered, quasi-two-

37
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dimensional structures which explains the large interestis technique after the discovery
of HTSC.

Eletron
B e-/4 analyzer

Figure 3.1.: The principle of angle-resolved photoemission spectroscopy: An incigeston with
energyhr knocks out a valence electron from the surface of the sample. Theekbiae
tensity of ejected electrons is proportional to the single-particle spectretién. Picture
taken from [30].

Under certain assumptions (mainly the so-caiedden approximatiom thestep models
see [29, 30] for details), the intensity of ejected eleciroreasured in photoemission experi-
ments (see Fig. 3.1) is given by

I(kvw) = IO<k> I/)f(w)Aﬁ(k7w) (3.1)

wherek is the two-dimensional momentum of the electron paralléhéosample surface: is
the energy of the electron with respect to the Fermi enefgys a kinematic factor which
depends on the momentum of the electron, but also on theizatian and frequency of the
incident photon. There are experimental methods to renmtusddctor (normalization to the
spectra in a different phase, explicit calculation, sébectules, etc.) which I will not discuss
here. The function

B 1
14 e

f(w) (3.2)
is the Fermi-Dirac distribution. At zero temperatui® & 5~! — 0), photoemission only
probes the occupied states with < 0. Ag(k,w) is the single-particle spectral function,
defined as the imaginary part of the retarded Green’s fumctdzero temperature, it is given



Strongly correlated superconductors and their electronigoroperties 39

by [29, 30, 95, 96, 97]

Alk,w) = —%mGMmu+w+)
1 N 1 tLN Nt 1 N
= ﬂlm [@Do |Ckw —[H—E] —}—iO*CkWO ) + (¥ |Ckw T IH - EN +2’O+Ck|w0 )
= > NN ekl 6len — w) + D [ ewlvg )P d(em +w). (3.3)

148"} is the normalizedV-particle ground state of the system with enefgy. The last line
of (3.3) is the so-calledpectral representatigmyY*1) are the eigenstates wifti+1 particles,
respectively, and,, are the excitation energies. Note that the spin indéx omitted in ex-
pression (3.3). ARPES measurements are not sensitive tdettieom spin and | will omit it
whenever an expression is valid for both spin orientations.

ARPES measurements must be done at low temperature [5]. Tihelnasvback of (direct)
ARPES is its insensitivity to the spectral function at pesitenergyw, because of the strong
cutoff from the Fermi-Dirac distribution in (3.1). The eggrsymmetrization of ARPES spec-
tra is a widely applied procedure to fix this issue [29]. Uniter assumption that the spectral
function is symmetric inv, one may write

I (k,w) =1(k,w)+ I(k,—w) = Iy(k,v)Az(k,w). (3.4)
However, the symmetry in energy of the ARPES spectral funagia@ontroversial.

An alternative to thelirect ARPES discussed here (photon in, electron out) isrihierse
photoemission spectroscopy [30]. In inverse ARPES, eladammbardment of the sample
produces emission of light which is then detected (electmprphoton out). The inverse
method probes the occupied electron states in the solid eowides information about the
spectral function at positive energy. However, inversegpscopy has very poor resolution
at present and the angle-resolved information is of litde.u
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3.2. Analysis of the spectra within the
resonating-valence-bond picture and the-J model

In the following, | am interested in the spectral propertidés strongly interacting system
as described, e.g., by thie/ model. | suppose that the onsite repulsions very large and
consider only the lower Hubbard band where the double ocuyps projected out. The
energy range in the projected subspace is restricted |t Qy whereQy ~ U is a large
cutoff scale. In the case of the cuprates, this cutofijs~ 1eV [98].

3.2.1. Spectral sum rules in the-J model

In the subspace with less than 2 electrons per site, we maly witin Gutzwiller-projected
electron operators,

éio = Cio[]- — nia] y (35)
and their Fourier transform,
~ 1 ~ —ikex; (3 6)
Chg = ——= Cic€ . .
VL~
The (anti-)commutation relations are
{Eiav 6;[‘0-} = 57§j [1 - ni&] ) (378.)
{@'07 E;[&} = 5ij CL—IC%’U s (37b)
{éio’, 6j0} = 0. (37C)

The spectral function (3.3) in the lower Hubbard band is i

Ak, w) = —%Im@(k,w%—i()*)
= D HEYTEL P 6(En — w) + > DN T @) 6(Em +w) (3.8)

where the eigenstates and energies are now restricted @uitizeviller-projected subspace.
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The total (single-particle) spectral weights are defined as

0
7o = / Ak, w)dw = 3 [Nl B (3.92)
7o = / Ak, w)do = 3 [P, (3.9b)
0 n
R / Alk, w)dw . (3.9¢)

I will call Z™* the spectral weight on the particle side particle spectral weightZ*°- the
spectral weight on the hole side,lowle spectral weightandZ' thetotal spectral weightlt is
clear from the form ofd(k, w) that the spectral weights satigfy< Z'** < 1. The following
sum rules are straight-forward to find by completeness of the bb[s,i$,

7 = (ke i) = T, (3.10a)
. - 1
Z = () ewchld) = ;w — ik, (3.10b)
and
~ I 1+«
2 = (g Hew, e tin) = —— (3.11)

wherexr = 1— % is the hole doping. The last Eq. (3.11) follows directly fréme commutation
relation for projected fermions, Eqg. (3.7a). Note that thtaltspectral weight founprojected
fermions is clearly equal to one. The deficiency from unityhia sum rule (3.11) is due to
the Gutzwiller projection and the missing weiglt |- z)/2] is in the upper Hubbard band,
lw| 2 Q. The effect of the projection is strongest in the limit offfdling, = — 0. At large
doping ¢ — 1), the commutation relations (3.7) tend to a conventionahfand the entire
spectral weight remains at low energy.

Further statements can be made if we integrate expressdr®® overk,

1 1—2

Y 12

1

- N2 = (3.12b)
k

We arrive at the known result [44, 98] that at half filling, tte¢éal spectral weight is entirely
on the hole side and given by a constaequal tol. This asymmetry near half filling is a

The corresponding finite-temperature expressions for Bgs0) arejfcoo fw)As(k,w) = (é,tékm and
[ - f(w)]As(k,w) = (E@L}g, see [29, 30]. Relation (3.11) is equally valid at finite tergiure.
Note thatZ?" = fi, = 3 andZ,>*" = 0 for all k asz — 0.
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sign of the closeness to a Mott insulator and explains, famgde, theoverall asymmetry
observed in the tunneling spectra between negative antiygoias voltage [44, 98]. Note
that this (rigorous) asymmetry has nothing to do with thespnee or absence of symmetry
in the position of the coherence peaks or in their intensitge question how this spectral
weight of a doped Mott insulator is distributed amaraherent quasiparticleandincoherent
backgrounds still open. | will discuss and comment on these issuesarrémaining part of
this chapter.

3.2.2. The Gutzwiller-projected BCS state and its excitations

In this section, | specialize to a particular variationasaz for the low-lying states of the
t-J model: the BCS wavefunction. As explained in Chapter 2, soar #fie discovery of
high-temperature superconductivity, a ground state ofdira of a Gutzwiller-projected BCS
wavefunction was suggested because of the natural way éqadain the emergence of super-
conductivity from a Mott insulator when doping is increa$&d]).

The BCS Hamiltonian [25] is given by

Hpges = —t Z gkCLUCkU + Z Akckgc_k(—, + h.c. (313)
ko ko

Its spectrum is described by the Bogoljubov quasipartickraiprs,

Voo = UkCho — OVKC 15 (3.14)
where
1 &k
W= = —1— 2. 3.15
k 2[ G Ai] k (3.15)

The ground-state wavefunction of the BCS Hamiltonian is
o Y~k Vko o toT
|BCS> = Hk—v |0> = Hk[uk + vk’ckTC—kl”O> s (316)
k

where|0) is the vacuum for the electron operators.

| construct now a simple variational wavefunction for thg model by Gutzwiller-
projecting the BCS ground state and also projecting it to a fingdber of particlesyv,

IN) o Py P;|BCS) . (3.17)

The state (3.17) was found to have very low variational energen ad-wave BCS wave-
function of the form¢, = —2t[cos k, + cosk,] — i, Ax = Afcos k,, — cos k, ] is chosen, and
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wu/t and A/t are used as variational parameters [27, 28, 34]. Howevehjsrsection | will
discuss the BCS wavefunctions without specializing totiveave case.

Gutzwiller-projected quasiparticle excitations of thenfo
ko, N) o< Py Py}, |BCS (3.18)

have been discussed in the literature at least since thewark of Zhanget al.[26]. They
enjoy renewed attention in this century after the work olRakantet al. [6, 33, 97, 98, 99,
100, 101, 102]. Let me first discuss some general propertigese excitations.

General properties of Gutzwiller-projected BCS quasiparticles

Note that there are several natural candidates for singfigefe spini excitations. Before
Gutzwiller projection, we have

vl |BCS) o ¢l |BCS) o c_15|BCS) . (3.19)

Clearly, these wavefunctions are also proportional afteiz@iller projection. More quasi-
particles can be constructed by applying the operators thigeprojection. However, it turns
out that the only non-proportional excitation is

CkUPd|BCS> . (320)

These two excitationsP,c|BCS and c¢P,;|BCS), are linearly independent candidates for
spin—é excitations, orthogonal to the ground st&gBCS). In this thesis, | am exploring
the first type of excitationP,c|BCS). The second excitation was considered in detail in a
recent publication by Taat al.[103].

Consider the normalized ground-state wavefunction
|N) o< PyPy|BCS) (3.21)
and suppose that the (normalized) coherent one-particieaions have the form
ko, N £ 1) o< Pys1Pacl, |BCS). (3.22)
In this case, the zero-temperature spectral function (8.8)

Ak, w) = [(N + 1, ko |ef, [N)Po(e, = w) + [(N = 1, kolexo | N)Pd(ey, +w) + ARE(w)
(3.23)
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wheree; are the variational energies of the excitatiéns,
6 = (N +1,ko|H|ko, N + 1) — (N|H|N) (3.24)

and Al is the incoherent partof the spectral functiofi. The prefactors in (3.23) are the
spectral weight®f the quasiparticle (3.22) or tteherent spectral weights

Z¢ = |(N+1,kolct |N)?, (3.25a)
Z, = [N —1,kolcgs|N)*. (3.25b)

The coherent spectral weights can be brought to a simpler.féior clarity, 1 will drop
the particle-number projector and the spin indices in thievong. Using the simple rela-

tion P,cP, = cP,, the particle spectral weight can be writtenas = ‘g)c(’z ;Z'; = <C<’;f;>.
Commuting the projected operators by using (3.7a), oneinds
14+
ZF = - (N|cl_cro|N). (3.26)

Comparing (3.26) with the general result, Eq. (3.10b), welsaithis excitation has a spectral
weight which isentirely coherent on the particle sidee.

A®(w) =0 forw > 0. (3.27)

As a corollary, it is clear thaf,, = Z;>" « x whenz — 0. Furthermore, | can derive the

following exact relation for the hole spectral weight. Ugian alternative representation for
: . : _ [ePcP)|? _ |{PccP)|? _ (PccP)|?

the excitation [see (3.19)], one may write = (PYPery = (PYePet) = \(B)P2T and therefore

we have proven that

757 = {ko, N — 1|c_gscro|ko, N + 1)]2. (3.28)

Interestingly, this relation also holds for the unprojecBCS state (where/,! = |ux|? and
Zy, = |vkl?).

The right-hand side of (3.28) can be used as a superconduntier parameter for a finite
system [104, 27]. This is a natural choice, since the of§diel long-range order which
defines the superconducting coherence of a state [33], gamel

q);-s;c = lim <cigcj5cT cf ), (3.29)

o0 i+ro-j+ro

3] have omitted here a possibigdth F,f of the quasiparticle. This omission is not relevant for tbkofving
discussion.

4This terminology implies that we think ofi"® as a smooth function af without singularities. The corre-
spondingincoherent spectral weightre defined ag"+ = + foi"o AN(W)dw = 7% — 7+,

SRelation (3.26) was published recently by S. Yunoki [97].
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implies finiteness of the matrix elemefat’).®

It is clear from the general sum-rule in a Gutzwiller-praget Hilbert space [Egs. (3.10)
and (3.11)] that the coherent spectral weight of the quatsiteis bounded,

Zy < 7 =y, (3.30a)
1
Zu=Z; + 25 < 7%= ;“” . (3.30b)

We have also explicitly proven these inequalities for thisitation in the publication [102].

In fact, it was recently shown by Taat al. [103] that the basis for elementary excitations in
the projected Hilbert space is complete when the secondagixei, c| V), is included. That

is, the total hole spectral weight of these two excitatioms sIp ton,. The new excitation
constructed by these authors fod-avave superconductor produces a strong coherence peak
at high energy ~ —3t ~ —1eV). On physical grounds, however, such an excitation is
guestionable. A further coherent excitation which takeghgentire intensity seems to be
inconsistent with ARPES experiments, where a part of thedaergy spectral intensity is
incoherent, especially in the antinodal region (see, Bef., [121]).

Gutzwiller approximation for the quasiparticle spectral weights

Before proceeding with the numerical evaluation of the gpégteights, it is interesting to
consider their values in the Gutzwiller approximation (G#%&e Section 2.1.3). A careful
derivation of the simplest GA for electronic excitationstrongly correlated superconductors
was recently published by Edegger al. [41] and Fukushimaet al. [42], including also
Hubbard-model corrections in [101]. | will give here veryuhistic arguments for the-J
model, which are nevertheless in complete agreement watinéntioned calculations.

The particle spectral weights can be brought to the form gty matrix elements. As
(cPct)

already discussed;™ = RIINE This is exactly the hole-hopping term which is renormalize
by g, = ﬁr—“’ﬁw in the renormalized mean-field theory [26]. Similarly, orencshow that
Z- = <‘C<f;cf;<>]':>. According to the general principles of the Gutzwiller appmation [6],

we expect that all these matrix elements are renormalizétidofactorg; with respect to the
same expectation values without Gutzwiller-projectofoliows that

Zy o~ gl - ny) = geuy,, (3.31a)
Zy, gtn% = gtvi7 (3.31b)

wheren), = (cic,) is the momentum distribution in the unprojected wavefwrctiAccord-
ingly, the off-diagonal matrix elements [right-hand sidg®28) or (3.29)] are renormalized

5The inverse statement is not true in general. In SectionI&d| show that it holds in the special case of a
d-wave superconductor.
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by the same factar,

<Pdcfkackapd>
(Pa)

= 9t<6—kacka> = 010 UgVk . (3.32)

Let me discuss these Gutzwiller-approximate results naHrfiling. The GA suggests
that 7t « Z= «x (PccP) «x x asxz — 0. Note that these results are perfectly consistent
with the two exact relations, (3.26) and (3.28). Furthemmdre total coherent spectral weight
within GA is a constant equal tg,. This is consistent with the exact sum rule (3.11), i.e.

Zi =2 + Zy, = gilui, + vi] = 55 < 200 =1

ZT o x is expected, since the total particle spectral weight" is known to vanish with
this power near half filling [see (3.12b)]. However, the GAuk 7~ « x is not evident on
general grounds, since the total hole spectral welitftit is finite at half filling. In Section 3.3,

I will discuss the numerical results for the coherent s@teteights which | obtained by the
variational Monte Carlo method. Although my results indécatdecrease with doping of the
hole spectral weight, the decrease seems to be less stramgvtiat is suggested by the GA.
Such a patrticle-hole asymmetry near half filling was confarrerecent publications [105,

106]. Note that it has recently been claimed by Fukushimd®&j fhat he can reproduce this
particle-hole asymmetry within a variant of the GA in thergtacanonical ensemble.

As | discussed in Chapter 2, the propefyccP) ~ z“ with « > 0 is an important
conceptual ingredient which motivated Anderson’s RVB ¢arttion. The GA suggests that
«a = 1. Spanuet al.[107] have recently argued that the powemay actually be smaller than
unity. Note that the particle-hole asymmetry that | find regdf filling is related to the power
of the vanishing of the superconducting order, as it is evii®m the exact formula (3.28).
Clearly, we must have: > % In the extreme limity = % the hole spectral weight is finite
at half filling (7= o« 22>~!). | have not found any proof or disproof of a finite coherenieho
spectral weight at half filling, or any further bound on théueaof o. The possibility of a
k-dependent exponentwas discussed in Ref. [105].

The limit z — 0 discussed here is relevant if we view it as a model of the piadmn
superconductivity vanishes, at the underdoped end of thersanducting dome (and not at
half filling). This region of the phase diagram is sometimaBed thespin-gap phas¢7].
The ARPES intensities in this region of the phase diagram arg broad and the presence
or absence of well-defined coherent quasiparticle peaksnatter of ongoing debate. From
the narrower viewpoint of a variational approach to thé model, this discussion is less
relevant. In the half-filled limit, magnetic correlationesdmme important and the energy of the
pure BCS wavefunction can be lowered significantly by intradgi@ntiferromagnetic and

"Here, we make the important assumption that the averagielpartimber in the Gutzwiller-projected and in
the unprojected wavefunction are the same. This is not theeraar half filling for simple BCS wavefunctions
in the grand-canonical ensemble, where the particle nunsbatowed to fluctuate. This leads to subtle
issues with the Gutzwiller approximation in the grand-g@oal ensemble which | will not discuss here. See
Refs. [41, 43, 44].
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staggered-flux order parameters in the mean-field Hamdtgritq. (3.13) [34]. For a realistic
modeling of the cuprates at half filling, it would be necegdarconstruct spin and charge
excitations in such statés.

3.2.3. Effective Fermi surface for the coherent quasiparticle

The Fermi surface (FSr) of a metal is defined as the locus in the Brillouin zone (BZ) with
gapless charge excitations. Equivalently, one defines $hasRhe points in the BZ where the
one-particle normal Green’s function [see (3.3)] divergethe Fermi enerdy{108],

Gkp,w=0) - +o00. (3.33)

In the absence of single-particle excitations at the Femargy (e.g. in the case of a super-
conductor), the definition of the Fermi surface is extenadeti¢Luttinger surfacg109, 110].
The Luttinger surface is defined as the locus in the BZ whereGieen’s function atp
changes sign, i.e.

G(kp,w = 0) — 0, £00. (3.34)

In the following, | will use the term Fermi surface in the m@eneral sense of a Luttinger
surface.

It has been emphasized recently in Refs. [111, 112] that ambigaious experimental
determination of the Fermi surface in superconducting a&i@gris difficult. The following
definitions of the Fermi surface are most commonly used irexgents [29, 30]:

e locus of minimal gap This is either determined from the experimental dispersio
from the maximum in the spectral intensity at the Fermi epefgk, w = 0).

e maximum gradient methodThe momentum distribution may be determined experi-
mentally fromn, = [ f(w)A(k,w)dw. The experimental FS is then defined as the
point on a cut in the BZ wher@,n, is maximal.

e half-n - The locus of points wherey, = 1.

e normal-state FS The sample may be heated up abd@ve(or 7" in the underdoped
region) and the location of gapless excitations can be found

I will not further explore the issues related to the deteation of the experimental FS. Note,
however, that the various definitions of the FS usually agvigiein the experimental uncer-
tainties. Furthermore, within conventionalvave BCS theory with small gap paramet®r
the various experimental definitions of the FS coincide whiunderlying Fermi surfacén

8See also Section 3.4, where | model the pseudogap phase withaomplicated mean-field states, however
without taking into account the Gutzwiller constraint ethac
°Here and in the following, | choosg: = E%, — EY as origin forw.
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the BCS theory [111], defined as
€ep =0, (3.35)

where¢y, is the normal dispersion in the BCS Hamiltonian, (3.13).

In the context of the variational quasiparticle excitatthecussed in this thesis, we may
write the single-particle Green’s function as

+ —
Zk: Zk:
+ —_
W — € W+ €

Gk,w) = + GP(w), (3.36)

where theG'°(w) is the smooth incoherent background afidare the variational excitation
energies given in (3.24). Neglecting the incoherent bamkgd and under the assumption of
a symmetric dispersiog, = ¢, the Luttinger condition (3.34) becomes

Zt =2, (3.37)

This motivates our definition of theffective Fermi surfacas the points in the BZ which
satisfy relation (3.37). Note that the assumptign= ¢, is not evident close to half filling.
However, Yunokiet al.[99] have found a symmetric quasiparticle dispersion indase of a
d-wave superconductd?,which gives support to this assumption. Note also that ircése of

an unprojected BCS superconductor, whgfe= u3 andZ, = v}, the effective FS and the
underlying FS coincide. This is even the case in the strangpling approach within the GA,
whereZ; = g,ui andZ, = g,vi. Putting aside the correctness of the assumption of a sym-
metric dispersion and the negligence of the incoherentdrackd, a deviation of the effective
Fermi surface (3.37) from the underlying one (3.35) indisad departure from conventional
BCS theory and a breakdown of the simplest version of the Gli&zvaipproximation.

1%These authors apply an additional Jastrow factor to that#anial ground state and excitations.
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3.3. Spectral weight of a Gutzwiller-projectedd-wave
superconductor

The main results of this section have been published in [102]

3.3.1. Introduction

Shortly after the discovery of superconductivity in coppgide compounds [2], Anderson
proposed a Gutzwiller-projected BCS wavefunction which woudlescribe the super-
conducting ground state of high-temperature supercondui?]. The variational approach
to superconducting cuprates based on Anderson’s origimgdgsal has since had a lot of
success, while the strong Coulomb repulsion and the nomrrpative nature of the problem
make other approaches extremely difficult. Interest inquigd wavefunctions as variational
ground states for cuprate superconductors was initiatesetgral research groups in the late
80's [27, 28] and has led to considerable activity in the fi@lde Gutzwiller-projected wave-
functions show a large overlap with exact ground states alsitusters and have low vari-
ational energies for the J model [104, 113]. Furthermore, several experimental progse
of the cuprates like the zero-temperature phase diagrami-avale pairing symmetry are
extremely well predicted within this approach [6, 33].

Due to considerable progress of the experimental technojuengle-resolved photo-
emission spectroscopy (ARPES) on cuprates, more and maneghi@lity data on the low-
lying spectral properties of these compounds have been avadlable in recent years [29, 30].
Experimentally, the low-energy excitations of supercartohg cuprates are known to re-
semble BCS quasipatrticles (QPs) [119]. It is therefore isterg to theoretically explore
the wavefunction of projected QP excitations and compagentto unprojected BCS QPs.
The most apparent differences are the doping dependenciieohadal Fermi velocity
and the renormalization of the nodal QP spectral weight anth@ current carried by
QPs [33, 97, 99, 100, 101]. In this section, we further aralye properties of the super-
conducting ground state and the QP excitations with theatrarial Monte Carlo tech-
nigue (VMC) [27]. We calculate the equal-time Green’s fuot, both normal and anoma-
lous, in the Gutzwiller-projected state and derive frormtitbe QP spectral weights for addi-
tion and removal of an electron at zero temperature. The ommnolusion of our study is that,
due to a nontrivial interplay of superconductivity and sgadCoulomb repulsion (Gutzwiller
projection), the coherent electron and hole spectral wigighe renormalized differently. A
natural way to describe this asymmetry is to define the “&ffed-ermi surface” as the locus
of points where the electron and the hole spectral weiglet®qual. Thus defined Fermi sur-
face acquires an additional outward bending in the antineggon as compared to the original
underlying Fermi surface. This bending is a signature ofvéadien from the BCS theory and
may be responsible for the geometry of the Fermi surfacerebden ARPES experiments.
The validity of Luttinger’s rule [109] in strongly interangy and superconducting materials
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has recently been questioned experimentally and thealgti29, 30, 111, 112]. Our find-
ings provide further indication of its inapplicability itrengly correlated superconductors.

The remaining part of Section 3.3 is organized as followsctiSe 3.3.2 contains the
definition of the model and the wavefunctions used in ourwdatons. In Section 3.3.3, |
describe our results on the QP spectral weights. Sectiad &3levoted to the calculation
of the equal-time anomalous Green’s function. Finally,t®ec3.3.5 discusses the “effective
Fermi surface” and its deviation from the underlying Ferorface.

3.3.2. The model

In the tight-binding description, the cuprates are modégelectrons hopping on a square

lattice. The appropriate model is the/ Hamiltonian:

n;n;
4

Ht.J:—t Z PdCIUCjJPd—}—J Z(SZS]—

<1,7>,0 <i,j>

) (3.38)

acting in the Hilbert space with less than two electrons get Heren,, = c}acw, S, =
%ZM, cl o.4ciqr, € is the electron creation operator in the Wannier state at siindo
are the Pauli matrices. The no-double occupancy is presdryeghe Gutzwiller projector
Pd = Hl[l — nﬁnil].

The ¢t-J model can be viewed as the largelimit of the one-band Hubbard model,
neglecting the 3-site-hopping term. Provided that the rhisdenalytic in¢/U, doubly occu-
pied sites can be re-introduced perturbatively to recdwefull Hilbert space of the Hubbard
model [15, 33]. Although the inclusion of these correctignesent no major difficulty, we
choose to neglect them here. In most quantities, only snmaitections arise from finite
double occupancy [33, 100], which makes this approach tdatige{/ Hubbard model con-
sistent. Furthermore, it has been argued that-thenodel is in fact more appropriate than the
one-band Hubbard model in describing the Gylanes [16].

We consider the usual variational ground state [27],
|Wn) = PxPy|d-BCS(A, 1)), (3.39)

where Py is the particle number projector on the subspac& alectrons. We will denoté
the total number of sites. Both particle number and numbeited are even|d-BCS) is the
ground state of the BCS mean field Hamiltonian with nearegihiier hopping and-wave
pairing symmetry on the square latticel-BCS) = Il|ug + vkcLTcT_lem x g oYk |0)-
Vho = UkChke — avch_k&, uj = %(1 + g—’;) =1—v}, Ex = /& + A%, & = —2(cosk, +
cos ky) — p, A = A(cos k, — cos k). The wavefunction (3.39) has two free parametexs:
andu. These variational parameters are chosen to minimize grggof thet-J Hamiltonian
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(3.38) for the experimentally relevant value= 3.J and for every doping level. | use the
optimized parameters from [34].

The following ansatz is used for the excited states [6, 2693399, 100, 101],
| n ko) = PnPayl |d-BCS) . (3.40)

In the following, the normalized versions of (3.39) and (§.4vill be denoted by V) and
|ko, N), respectively:

IN) = |[Uy| M Wy), (3.41a)
|kU7N> = ||\I;N,k:,a||_1|\IJN,k:,U>- (341b)

The RVB wavefunction (3.39) implements both strong elettrorrelations and super-
conductivity!! It is known to have a considerable overlap with the true gdostate of the
t-J model at non-zero hole doping on small clusters [113, 104, 115]. There is also
numerical support from exact diagonalization studiesaating well-defined BCS-like QPs
as low-energy excitations of thieJ model [116]. Therefore, the excited trial states (3.40)
are expected to be close to the true excitations ottlianodel. However, here we are more
interested in the physical content of the proposed wavditumethan in their closeness to the
eigenstates of a particular Hamiltonian.

1IAs an alternative to the canonical formulation in Egs. (3&&d (3.40), one can work in the grand-canonicall
ensemble, without the particle-number projector, but waithadditional fugacity factor [41, 44]. Here, the
canonical scheme is chosen for numerical conveniencejsasdimmonly done in most VMC studies.



52 Strongly correlated superconductors and their electrort properties

3.3.3. Quasiparticle spectral weights

As | discussed in Section 3.2.2, the cohetéspectral weights are defined as the overlap
between the bare electron or hole added ground state and?tlexctations of the model,

7 = |{ka, N £ 1|c,|N)|*. (3.42)

The particle spectral weight can be calculated from theicgid97]

1+

Zr = 5

— Nk, (3.43)

whereny is the momentum distribution (equal-time normal Greenixtion),
ni = (N|ckcro| N, (3.44)

andz =1 — % is the hole concentration.

The hole spectral weight can also be calculated from gratatd expectation valués,
with the help of the relation derived in Section 3.2.2,

287 = 10, (3.45)
where®,, is the superconducting order parameter (equal-time armra&reen’s function),

dp = <N - 1|Ck:TC—kzl|N + 1) . (3.46)

Further, we define the total (coherent) spectral weight as
Zy =24 + Zy, . (3.47)

The main contribution t&y, is given byZ," outside the Fermi surface and By inside. As |
discussed in Section 3.2.2, the weights must satisfy therpgpunds7;, < “T’” andZ, < n.

Numerically, | compute the spectral weighf, by first computingZ,” and®;, and then
using relation (3.45). The disadvantage of this methodrgel@rror bars around the center of
the Brillouin zone where botl,;, and®;, are smalf* However, the precision is sufficient to
establish that the total coherent spectral weights a smooth function ok and has no singu-
larity at the nodal point. In order to avoid the singular geialong the nodal direction of a
d-wave superconductor, | use periodic boundary conditinrme, and antiperiodic boundary

2Throughout this section, the coherent (quasiparticlektspeweight is discussed; the word “coherent” is
sometimes omitted in the following.

13Note that | am assuming wavefunctions with conserved paritiis section, i.eZ = ka.

14Recently performed calculations & by direct sampling of the excited states are free from thibjem
[106, 117].
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conditions in the other direction. More technical detaitstioe Monte Carlo algorithm can be
found in Section 2.1.2.

In Figs. 3.2 and 3.3, | plot the spectral weight$, 7, , and Z,, along the contou® —
(0,7) — (m,m) — 0 in the Brillouin zone for different doping levels. Figure ZbBows the
contour plots of7;, in the region of the Brillouin zone where our method produeealkerror
bars!® From these data, we can make the following observations.

() Inthe case of an unprojected BCS wavefunction, the toetpl weight is constant and
unity over the Brillouin zone. Within the Gutzwiller approxation, the total weight is a
constant equal t@%. Taking the Gutzwiller projection into account exactly, see that
for low doping (¢ ~ 3%), the spectral weight is reduced by a factor ugiqwhich is
in qualitative agreement with the GA). The renormalizat®asymmetric in the sense
that the electronic spectral weighf is more reduced than the hole spectral weight
The total spectral weight is not constant, in disagreeméhttive GA. For higher doping
(x ~ 23%), the spectral-weight reduction is much smaller. The edechole asymmetry
decreases and the total weight is closer to the GA pred&tion

(i) Since there is no electron-hole mixing along the zoregdhal, the spectral weightg
and Z,, have a discontinuity at the nodal point. The data show thattdbtal weight
is continuous across the nodal point. Strong correlatiagsdwt affect this feature of
uncorrelated BCS theory. Recently, it has been shown in Ref] {h@bthe total spectral
weight of the Gutzwiller-projected (non-superconducliRgrmi sea is continuous across
the Fermi surface. This is consistent with our result.

In Ref. [119], the coherent spectral weights of a slightlyrdeped sample of Bi2223
were measured along the dut 0) — (7/2, 7/2) and an almost constant total spectral weight
was reported in this experiment. It can be seen from Fig.l&a6the total spectral weight is
approximately constant along this cut, so the experimeesallt agrees well with this property
of the quasipatrticle excitation.

An anisotropy of the ARPES intensity along the experimentl(the so-called nodal-
antinodal dichotomy) was reported in a series of experimg#20, 121]. Experimentally, the
spectral weight measured in the anti-nodal region is sgseitin underdoped cuprates, while
it is large in the optimally doped and overdoped region. Wguihis effect is associated with
formation of some charge or spin order, static or fluctuating. From Fig. 3.6 we see that
a similar (but weaker) tendency can be observed in the frameaf Gutzwiller-projected

150ur VMC results show qualitative agreement with the holecspéweight reported in Ref. [101] where the
authors used the Gutzwiller approximation to calculatesdm@e quantity in the large-U Hubbard model. It
should be noted, however, that the asymmetry we find neafiliiatj cannot be explained within the standard
Gutzwiller approximation. In a recent publication, Fukimsa [43] proposes an extended Gutzwiller approxi-
mation scheme. The author claims that his scheme can regdbda asymmetry in our VMC results. Our
results are consistent with other recent VMC calculatidi¥[ 105, 106, 118, 103] and earlier calculations
of Z;" in Ref. [33].
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Figure 3.2.: QP spectral weights for 6 holes (upper plot= 3%) and 22 holes (lower plot; ~ 11%)
on 196 sites. The spectral weights are plotted along the cofteu(0, 7) — (w,7) — 0
(shown in inset). Plus signs-( blue) denote the particle spectral weig?;j, crossesx,

red) denote the hole spectral weighy[, error bars are shown. Solid dots (black) denote

their sum, the total coherent spectral weighyt, error bars not shown. On the horizontal

axis, the red star) denotes the intersection with the underlying Fermi surface along the

0 — (0, ) direction; the thick green dot is the nodal poirﬁ’.,j and Z, jump at the

nodal point, whileZ,, is continuous. The intersection with the effective Fermi surface

(see Section 3.3.5) is marked by an green arrowhead. On the diagahakg@ment)k is
given in units ofy/2.

quasiparticle excitation$. However, the experimentally observed effect is much soagd
a claim that the nodal-antinodal dichotomy can be explamighin this framework would be
too hasty.

181f we use the effective FS defined here to compare with theréxpatal one.
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Figure 3.3.: Same plot as Fig. 3.2 of the QP spectral weights for 34 holes (upperptot] 7%) and
46 holes (lower ploty ~ 23%) on 196 sites.
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3.3.4. Superconducting order parameter
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Figure 3.4.

X

Doping dependency of the nearest-neighbor superconductingmaceneter;; (calcu-

lated in the 1414 system). The error bars are smaller than the symbol size. The same
guantity calculated in the Gutzwiller approximation is also shown for compargee|
dashed line). The variational paramefeis shown with the scale on the right.

In Fig. 3.4, | plot the nearest-neighbor superconductingetation®;; [the Fourier trans-
form of ®, defined in (3.46)] as a function of doping. This curve showsselquantita-
tive agreement with the result of Ref. [33], where the autlestsacted the superconducting
order parameter from the long-range asymptotics of theeséareighbor pairing correlator,
3¢ = lim,_(coerclel, ;). With the method employed here, | find the same qualitative
and quantitative conclusions as previous authors [27, \&8}ishing of superconductivity at

half filling

r — 0 and at the superconducting transition on the overdopedaside 0.3."

1t is interesting to note that | observe a sensitive deperydehthe superconducting order parameter on the
variational parametex at high doping (ag\ — 0). This results from projecting to the particle-number tail
of an almost normal state\( ~ 0), if the value ofy is far away from the Fermi-sea chemical potential.
Remarkably, the optimal variational value @approaches the Fermi-sea chemical potentidias 0 [34].
In the Gutzwiller-projected Fermi sea,can no longer be treated as a variational parameter, buieid by
the particle-number constraint. (The variational paramemust nobe confused with the physical chemical
potential.)
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The optimal doping is close to,,; ~ 0.18. In the same plot, | also show the commonly
used Gutzwiller approximation where the unprojected etgimmn value is renormalized by
the factorg, = 12+—=””w [6]. The Gutzwiller approximation underestimates the ecrivalue by
approximately25%.
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Figure 3.5.: Pairing correlation®,, in the Brillouin zone at different doping levels: ~ 3% (upper
left), 11% (upper right),17% (lower left) and23% (lower right) in al4 x 14 system
with periodic-antiperiodic boundary conditions. The dashed red line isreojected,
underlying Fermi surface.

In Fig. 3.5, I show contour plots of the superconducting opdgamete®,, for four values
of doping. It resembles qualitatively the unprojectediave pairing amplitude, but is some-
what distorted due to the particle-hole asymmetry (seeudson in the previous and the
following sections).
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3.3.5. Fermi surface

ky/n

kyln

Figure 3.6.: Contour plots of the total QP spectral weighy (black lines). The underlying FS (long-
dashed red line) and effective FS (short-dashed green line) arstadsm. The doping
levels arer ~ 3% (top left), 11% (top right), 17% (bottom left) and23% (bottom right).
The+ signs indicate points where we can compute the values within small error bars.
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As discussed in Section 3.2.3, teéfective FSs defined as the locug,, = Z . In
Fig. 3.6, | plot the underlying and the effective FS which gebtained by VMC calculations.
The contour plot of the total QP weight is also shown in thiaifgg It is interesting to note the
following points.

() In the underdoped region, the effective FS is open and detwards (hole-like FS). In
the overdoped region, the effective FS closes and embraoes amd more the under-
lying one with increasing doping (electron-like FS).

(i) Luttinger’s rule [109] for the effective FS is clearlyiolated in the underdoped region,
i.e. the area enclosed by this FS is not conserved by theaatten; it is larger than the
one enclosed by the underlying Fermi surface.

(i) In the optimally doped and overdoped region, the teiakctral weight is approximately
constant along the effective FS, within error bars. In thghlyi underdoped region, we
observe a small concentration of the spectral weight artimdodal point£ 20%).

A large “hole-like” FS in underdoped cuprates has been tedan ARPES experiments by
several groups [120, 122, 123]. The effective FS that | firré grees with these experimental
results.

It should be noted that a negative next-nearest hoppivgould lead to a similar FS
curvature as | find in the underdoped region. | would like tgobasize that the original
t-J Hamiltonian as well as the variational states do not cordai’. Our results show that
the outward curvature of the FS is due to strong Coulomb répylithout need of’. Next-
nearest hopping terms in the microscopic description otthgrates may not be necessary to
explain the FS curvature found in ARPES experiments. Rembgkiéithe next-nearest hop-
pingt’ is included in the variational ansatz (and not in the origtrd Hamiltonian), a finite
and negative’ is generated, as it was shown by Himeda and Ogata [124]. Apfgrin this
case the underlying FS has the tendency to adjust to thetieffdeS. A similar bending of
the FS was also reported in the recent analysis of the curegried by Gutzwiller-projected
guasiparticles [100]. A high-temperature expansion ofrtteenentum distributiom,, of the
t-J model was done in Ref. [125] where the authors find a violatidouttinger’s rule and a
hole-like curvature of the FS. Our findings provide furtheidence along this line.

A natural question is the role of superconductivity in theamventional bending of the FS.
In the limit A — 0, the variational states are Gutzwiller-projected exitet of the Fermi sea
and the spectral weights are step-functions at the (undgjliS. In a recent paper [105] it was
shown thatim,, .+ Zt = limy,_,.— Z,, for the Gutzwiller-projected Fermi sea, which means
that the underlylng and the effectlve FS coincide in thakcakhis suggests that the “hole-
like” FS results from a nontrivial interplay between straxagrelation and superconductivity.
We lack a qualitative explanation of this effect. Howevénmniay be a consequence of the
proximity of the system to the non-superconducting “stagddlux” state [34, 126] or to
antiferromagnetism [49, 33] near half-filling.
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3.4. An SU(2) approach to the pseudogap phase

The results presented in this section have been submittgulibtication [127].

3.4.1. Introduction

The most unusual and debated feature of high-temperatper@nductivity (HTSC) is the
pseudogap (PG) phase, the high-temperature phase in tleedoped region of the phase
diagram between the destruction of superconductivity.aand the pseudogap temperature
T+ [128, 129]. While the zero-temperature phase diagram of HiES€latively well under-
stood, there is currently much experimental and theoietitarest in the intermediate-
temperature PG phase. In this phase, several surprisireriggntal features show up: e.g.
the ARPES spectra show a state which is partially gapped oexperimental Fermi sur-
face [29, 30, 130, 131, 132, 133, 134].

Theoretically, the low-temperature physics of HTSC is wlekcribed by variational wave-
functions of thet-J model [3, 4, 5, 6, 26, 27, 113, 135]. The antiferromagneticepia
state at half filling is destroyed as doping is increased. futhe gain of spin-exchange
energy in the Gutzwiller-projected state,davave mean-field order is favored away from
half filling. The characteristic dome for the supercondugtorder can be reproduced vari-
ationally [33, 102]. Low-lying Gutzwiller-projected qugpatrticle excitations reproduce well
many experimental features [33, 97, 98, 99, 102, 106, 11@]. IBhe main disadvantage of
the variational approach is that it is a zero-temperatueerthand cannot easily be extended
to finite temperature or to high-energy excitations [5].

Many years ago, it was noticed that there is a redundant igésar of Gutzwiller-
projected fermionic wavefunctions exactly at half fillingarameterized by local SU(2)
rotations [137, 138]. Away from half filling, this redundanis lifted. Later, Wen and Lee
et al. proposed a slave-boson field theory, where this redundanaymoted to a dynamical
SU(2) gauge theory away from half filling [139, 140, 141]. Huvantage of the SU(2) slave-
boson approach is that it incorporates strong correlatidren gauge fluctuations around the
mean-field saddle points are included. Integrating ovegalige-field configurations in this
approach enforces the Gutzwiller constraipt 2. The slave-boson mean-field theory is then
not restricted to low temperatures.

The SU(2) approach to theJ model predicts that a state with staggered magnetic fluxes
through the plaquettes of the square lattice is close inggrerthed-wave superconductor at
low doping [126, 139, 140]. In fact, a staggered local SU@2ation on nearest-neighbor sites
transforms the-wave superconductor (SC) into the staggered-flux (SF).statese two states
are identical at half filling. At small doping, one expectse fbcal symmetry to be weakly
broken, and the SU(2) rotation provides a route to consalmiv-lying non-superconducting
variational state of the weakly doped/ model. This led to the proposal by Wen and Lee
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that the pure SF state should be realized inside vortex airel¥ SC [126]. Indeed, it was
confirmed numerically that the Gutzwiller-projected SHesia a very competitive variational
state for the-J model [34]. Further support for the SU(2) approach came fiteerdiscovery
of SF correlations in the Gutzwiller-projectdedvave superconductor [142].

In this work, we restrict ourselves to the so-called “stagdé-mode” which interpolates
between the SC and the SF states [143]. As the temperaturereased througfd,. in the
underdoped compounds, vortices proliferate and evegtdakitroy the phase coherence. In
order to form energetically inexpensive vortices in theesapnductor, the order parameter
rotates to the SF state inside the cores. However, in cdritta®rtex cores, we do not ex-
pect a pure SF state to be realized in the bulk. The PG statddshe viewed as a thermal
average over different intermediate states between then@kha SC state, parameterized by
appropriate SU(2) rotations.

In the superconducting phase at low temperature, it is gerffico include Gaussian fluctu-
ations away from the superconducting state. In this framnkewldonerkamp and Lee found
that coupling to the Gaussiatimode strongly depletes the antinodal quasiparticles][144
This is in contrast to zero temperature, where Gutzwillejgrted excitations show rather
weak reduction of spectral weight in the antinodal regiorl have shown in Section 3.3.

At temperatures betweeh andT™, strong fluctuations towards the SF state are expected to
affect the electronic spectral functions even more. In tlesgnt work, we are interested in the
electron spectral intensities in the pseudogap regionini.ine presence of large fluctuations
of the order parameter between the SC and the SF states.

Our model bears some similarity to themodel approach for the SU(2) gauge theory of
thet-J model, introduced by Leet al.[3, 140]. In contrast to these authors, we do not use
a self-consistent mean-field treatment, but we considerffact®e model with input from
Gutzwiller-projected variational wavefunctions of thed model.

A complementary study was conducted by Honerkamp and Leecohsidered SU(2)-
fluctuations in an inhomogeneous vortex liquid [145]. Thaathors computed the density
of states and helicity modulus, and found that a dilute tgofi SF vortices would account
for the large Nernst signal observed in the pseudogap pli4d€3.[In the present work, we
are particularly interested in the implications of the fuating-staggered-flux scenario for the
ARPES spectra.

Finally, let us note that our model concerns the low-enefggcia of cuprate super-
conductors|w| < 200meV. The interesting high-energy anomali¢s|(~ 0.4 - 1 eV) which
were discovered in recent experimental [147, 148] and #ieal [103] works are not in the
scope of the current discussion.

The remaining part of Section 3.4 is organized in the follayvivay. In Section 3.4.2,
we introduce the model and describe the observable (thdrap&mction) that we want to
study. In Section 3.4.3, we give a detailed account on thetspef the pure (unaveraged)
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states. Finally, in Section 3.4.4 we present our resultsh®averaged spectral functions and
in Section 3.4.5 we discuss the experimental implications.

3.4.2. The model

The local SU(2) rotation for the-J model [3] is conveniently written using spinon doublets
in the usual notatiom)’™ = (cT,cD. In terms of these doublets, the SF state is defined by
the mean-field Hamiltoniatlsr = >, zijngpj — 1>, Pl whereU>" = —xo3 —
iA(=)"="v, g, are the Pauli matrices, and the suiyy) is taken over pairs of nearest-neighbor
sites of the square lattice. In this work, we restrict owrsglto the following SU(2) rotation,
Ui; — giUyg;, with g; = ¢')’291. Note that ford = =, the SF Hamiltonian is rotated to

a d-wave superconductot/;" — US¢ = —xo3 + A(—=)""7=¢;. The intermediate states
for generald contain bothi-wave pairing and staggered fluxes through the plaquettdseof
square lattice.

We now consider the mean-field Hamiltonian at the interntedialues off between)
andr:

Hyp(0) =) blgl(0)US  9;(0)4p)]
- X Z ’%0203%‘ - MZ%DJU?)% :
((2,9)) ¢

(3.48)

As usual, the chemical potentialis added to enforce the desired average particle number.
We have also added a phenomenological next-nearest-rgigioippingy’. Note that the
parameters, \’, and A of the Hamiltonian (3.48) are the effective parameters rileisg

the variational ground state and quasiparticle spectruthef-.J model, for the physically
relevant values ~ 3.J. For example, the hopping only weakly depends on doping (at small
doping) and is approximately given gy~ g ~ 100 meV [33, 99, 101]. At10% doping,A/x
decreases slightly from 0.25 in the SC state te- 0.2 in the SF staté [34].

The value of the next-nearest-neighbor hopping is takeretg’b= —0.3y, to mimick
the experimental Fermi surface observed in cuprates. datiidies of Gutzwiller-projected
wavefunctions suggest that such an effective next-neamghbor hopping may appear in the
underdoped region as a consequence of strong correlagiozrsjn the absence of the term in
the physical Hamiltonian (see Section 3.3 and Refs. [102]) 1Rlbte that we keep this term
unrotated in (3.48).

ror the numerical averaging, we interpolate the order patamA in s = cosf as A(s) =
VA2 52+ A%_ (1 — s2). From the variational procedure in Ref. [34],tat= 3J and 10% doping, the
SF and SC variational values of the order parameter not lgxdentical: A,—; ~ 0.2 andA,—y ~ 0.25,
respectively. This weak dependency of the order paramatgionot important for the main conclusions of
our study.
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In our model, physical quantities at finite temperature avergby an appropriate func-
tional integral over the mean-field parametéfs, weighted by a free energy which is al-
most flat in the directions parameterized gy As indicated earlier, we restrict our study to
staggered SU(2) rotations parameterized by the afiglat the same time, we neglect the
amplitude fluctuations of the order parametersince the energy scale associated with these
fluctuations is high — of the order @f*, in our approach. On the other hand, the energy scale
e. = Fsr — Es¢, responsible for thé-fluctuations, is much lower — at 10% doping it is esti-
mated as. ~ 0.02J ~ 30K (per lattice site) from variational Monte Carlo calculasdB34].

The free energy describing classical fluctuations)afan be written in terms of &-
dependent “condensation energy” (of ordgrand a gradient term(V6)? [145]. We assume
a situation where the resulting correlation lengtk- \/p/c. is much larger than one lattice
spacing'® In this case, the characteristic temperature, below witiercondensation energy
selects the superconducting state over the staggered#ixsi. ~ p/In¢ (the same scale
determines the temperature of the Kosterlitz-Thouleps-tyansitionf° For temperatures
above that scale but belgwy

p/Ing <T <p, (3.49)

the order parameter slowly varies in space and takes alilpessmlues related by SU(2)
rotations. Therefore, in this temperature range, we canoappate the classical fluctuations
by an equal-weight statistical average over the uniforestaith all possible values éf The
corresponding integration measure fois fol d(cos ), inherited from the invariant measure
on SU(2).

We calculate the spectral functioff,(w) = —2ImG(k,w + iI') whereG is the single-
particle Green’s functiot of H,,», Eq. (3.48). Note thaty is measured with respect to
the Fermi energy throughout Section 3.4. As explained ghitneespectra in the pseudogap
phase are modeled by the averages of this spectral functemtioe order-parameter space,

fo d(cosf) A% (w). The spectral functions of the pure statel (w)] are sums of
delta functlons After averaging, the spectral functiooguare an intrinsic width. In addition,
we introduce a lifetime broadeniigto make the figures more readable.

BFor simplicity, we do not distinguish between the two sefises: fo¥ and for the superconducting phase.
We assume them to be of the same order and much larget th&his assumption does not fully agree with
earlier numerical calculations with Gutzwiller-projedteravefunctions (where the superfluid stiffness was
estimated of the same orderag [34], but is consistent with the experimental estimateg of order 5-10
lattice spacings. See, e.g., S. H. Raml, Phys. Rev. Lett85, 1536 (2000) or |I. Maggio-Aprilet al., ibid.

75, 2754 (1995).

20y, Okwamoto, J. Phys. Soc. JapaB 2434 (1984); A. S. T. Pires, Phys. Rev5B, 9592 (1994).

2INote that the unit cell fof ,,  [Eq. (3.48)] contains two sites. Therefore, one may defieentirmal Green’s
function as a 22 matrix. However, for comparison with the ARPES intensitg, are considering here the
Green'’s functionG (t) = i0(t){({ck(t), cL(O)}) which corresponds to the sum over all entries of the matrix
Green’s function. Sincél )y, is a quadratic model7(k,w) (and its spectral function) is independent of
temperature. The intensity measured in direct photoearisai finite temperature is given by this spectral
function times the Fermi distribution, see Sect. 3.1.1.
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3.4.3. Pure states

In order to understand the averaged spectral function, wedutline how the intermediate
states evolve as = cos 6 is increased froms = 0 (SC state) ts = 1 (SF state). In Fig. 3.8,
we plot the FS (more precisely the Luttinger surfd€ahnd the spectral intensity at the Fermi
energy. As the parameteris increased front), the BCS FS gradually deforms to the well-
known pocket around?, 7) of the SF state. However, the points on the SC FS where it
crosses the diagondtr, 0)-(0,7) do not move as is changed. We will call thensU(2)-
points because at these points, the full SU(2) symmetry is intaat @away from half filling.
We will comment more on this later. As we increas¢he SC gap, symmetric with respect to
the Fermi level, decreases and closesatl [Agc = 2(cos k, — cosky,) A1 — s%]. Atthe
same time, the SF gap opens on the diagonal)-(0, 7) at the energw ~ — [ [we define

fi = p — 2x' cos k, cosk,]. The SF gap value i&gp >~ 2(cos k, — cosk,) As. The spectral
weight is transferred among the four bands and all of them méé&nsity in the intermediate
states. However, in most parts of the zone, there is onlyglesstrong band.

The SU(2)-points we mentioned in the last paragraph belofagi to SU(2)-surfaces (see
illustration in Fig. 3.7) wher@ = 0. On these surfaces, the full SU(2) symmetry is intact even
away from half filling, in the sense that the mean-field sizeate degenerate and independent
of s = cos @ [if we neglect the weak dependendy(s)].

A schematic plot of the band structure and an illustratiothefspectral-weight transfer as
we go from the SC to the SF state is shown in Figs. 3.9, 3.103dkidon cuts parallel to the
nodal direction(0, 0)-(w, 7). The behaviour is qualitatively similar for all paralleltsu The
strong weights stay on the respective bands as they conshumove, except in a small stripe
between the diagondl, )-(,0) and the SC FS, outside the SF pocket (Regions Il and IlI
in Fig. 3.7). In Region Il i < 0), the strong SC band at positive energy transfers some of its
weight to the SF band at negative energy (see Fig. 3.10)., Heenidpoint of the SF bands
lies at positive energy. In Region IIli(> 0), the strong SC band at negative energy transfers
its weight to the SF band at positive energy (see Fig. 3.1hg mMidpoint of the SF bands is
now shifted below the Fermi energy.

22Known subtleties and discrepancies in the various defimstiof the experimental FS [111, 112] are not in the
scope of this discussion; here, we use the theoreticallirdedined Luttinger surface where the mean-field
Green'’s function changes sigf(kr,0) = 0, 00 [110]. The Green'’s function described in Footn8tis
used.
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Figure 3.7.: Schema of the different regions of the Fermi surface. The SC and @ ayen near
the node (N-point) where they are small and do not overlap. The Fenfaicsuappears
as a gapless arc in Region I. In Region Il, the two gaps start to overidgoam an
effective gap which is shifted upwards in energy (vertical arrowkg dffective gap comes
down in energy as we go towards the antinode in Region Il. Exactly at tiig)Sidints
on the diagonal(0, 7)-(m, 0), the effective gap is symmetric. Beyond the SU(2)-points
(Region 111), the midgap is shifted below the Fermi energy.
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Figure 3.8.: Contour plot of the spectral intensity at the Fermi energy for the puresst&teping is
10% and we use a lifetime broadenidg= 0.2y. The solid line (green) represents the
location of the Fermi surface where the Green’s function changes Bigm upper left

to lower right, we haveos§ = 0, %, %, 1. The upper-left plot shows the spectrum of the

d-wave superconductor, the lower-right plot displays the pure stad¢géux state.
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Figure 3.9.: Schematic evolution of the spectra along a cut parallel to the nodal direstgde the
pocket (through Region | in Fig. 3.7, e.g. cuin Fig. 3.12). The dot size is proportional
to the spectral intensity. From upper left to lower right, we hawe) = 0, %, %, 1. Upper
left is the superconducting state, lower right is the staggered-flux state.
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Figure 3.10.: Same plot as in Fig. 3.9, but for a cut outside the pocket (through Reliorig. 3.7,
e.g. cutcin Fig. 3.12).
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Figure 3.11.: Same plot as in Fig. 3.9, but for a cut outside the SU(2)-point (througjioRdll in
Fig. 3.7, e.g. cutl in Fig. 3.12).
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3.4.4. Averaged state

The gap considerations in the last section help now to utatedshe spectral properties of
the averaged pseudogap state. If we neglect the weak depsndlés), the average gaps in
the pocket region (Region | in Fig. 3.7) may be estimated/®s-) ~ 7A (cosk, — cosk,)

and (Agp) ~ A(cosk, — cosk,). In the region outside the pocket, the midgap energy of
an effective gap is approximately given by%/l. If we are strict with the definition of the
effective gap and only consider the truly excitation-fregion, then we come to a picture with
a gapless arc in Region | and an opening of an effective gap thiegmo gaps start to overlap
in Region Il. This effective gap opens above the Fermi enengya@mes down as we move
towards(m, 0). At the SU(2)-point, it is symmetric around the Fermi energipving further

out in Region Ill, we find an effective gap with midgap below frermi energy (see Fig. 3.7).

In Fig. 3.12, we plot the averaged spectral intensity at theri energy,A,(0), with a
quasipatrticle lifetime broadening @f = 0.2x. The “turn in” of the Fermi surface at the
pocket edge, which is typical for the pure SF pocket (see towht plot in Fig. 3.8), was
used in Ref. [149] as an argument against the staggered-fitx since this feature is not
seen in experiments. We see here that this “turn in” is cotalyl@vashed out by the averaging
(fluctuations towards the SC state). The “Fermi arc” of theraged state (arc of high intensity
at the Fermi energy; see Fig. 3.12) is clearly bent toward<$Sth Fermi surface.

0.0¢L, | | | | I
0.0 0.2 0.4 0.6 0.8 1.0
ky /T

Figure 3.12.: Averaged spectral intensity at the Fermi enerdy(0). Doping is10% and we use a
lifetime broadenind” = 0.2y. The dashed lines are the Fermi surfaces of the SF and SC
states, respectively. The full spectra on the euiis c are given in Figs. 3.13 to 3.16.
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Figure 3.13.: Averaged spectral intensity along a cut in the BZ parallel to the nodaltdirecuta in
Fig. 3.12. The spectra are set offrdirection byk, (in units of 7). We use a lifetime
broadeningl’ = 0.12x. The parameters used afgs) = /(0.25)2 + 0.252(1 — s2)
and doping isl0%. The energy is given in units @fy ~ 200 meV, the intensities are in
arbitrary units. The Fermi energy isat= 0.
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Figure 3.14.: Same plot as in Fig. 3.13 but on duin Fig. 3.12.
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Figure 3.15.: Same plot as in Fig. 3.13 but on cuin Fig. 3.12. An asymmetric effective gap with
midgap above the Fermi energy is formed.
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Figure 3.16.: Same plot as in Fig. 3.13 but on cdiin Fig. 3.12. An asymmetric effective gap with
midgap below the Fermi energy is formed.
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The averaged spectra on the cutt d in Fig. 3.12 are shown in Figs. 3.13 to 3.16. In
addition to the intrinsic width of the averaged state, weehelvosen a lifetime broadening of
' = 0.12x in these plots. From the averaged spectral intensities wecgafirm what was
already anticipated from the pure states:

() In the region near the node, one can see a small symmeipprassion of intensity
coming from the superconducting gap centered at the Fererggrand a very small
suppression coming from the staggered-flux gap centerecgdbe Fermi energy. These
“gaps” are easily washed out by broadening effects (see Big8 and 3.14) and may
give rise to a Fermi arc.

(i) Outside the arc, the (pseudo-)gap opens asymmetfyjoaith midgap first above the
Fermi energy (Fig. 3.15). Closer to the BZ boundary, as we dtes$SU(2)-point, the
gap becomes asymmetric with midgap below the Fermi eneigy3FL6). At the SU(2)-
point the gap is exactly symmetric (see illustration in B&d.).

(i) The backbending spectra at the edges of the two gajktea doubling of the bands in
some locations of the BZ (see Figs. 3.14 and 3.15). This banthohg only happens for
weak branches and at positive energy.

Finally, let us emphasize that the asymmetry we find in thiskwe in the location of
the two pseudogap coherence peaks with respect to the Feengye A different asymmetry
in the renormalization of the coherent spectral weightshn uperconducting state at low
doping has been reported in recent variational Monte Caltulzions, where the Gutzwiller
constraint:; < 2 is taken into account exactly (see Section 3.3 and Refs. [I®,105]). We
expect that such a spectral-weight asymmetry is also presenr model (if one includes the
Gutzwiller projection), but a confirmation would require @xtensive numerical work.
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3.4.5. Experimental implications

The intensity measured in ARPES experiments is giveh(kyw) = Iy(k) f (w) Ax(w) where
f(w) is the Fermi-Dirac function at a given temperature #nis the ARPES matrix element
(see Section 3.1.1). It is experimentally very challengimgonstruct unbiased methods to
measure the spectral function at positive enetgy-(0) since the measurement must be done
at sufficiently low temperatures. Energy-symmetrizatibthe ARPES spectra [29, 30] is a
widely applied procedure, although it uses the assumptiansymmetric spectral function
[Ag(w) = Ag(—w)]. Using this assumption, the Fermi-Dirac function can baaeed from
the experimental intensity; V" (k,w) = I(k,w) + I(k, —w) = Iy(k)Ag(w). However, there
is noa priori reason for the cuprate spectrum to be symmetric in energihédstaggered-flux
scenario analyzed in this section shows, the assumptiorbeayong in the pseudogap phase
of the cuprates.

The most striking prediction of our model, the formation oftaggered-flux gap above
the Fermi energy, is difficult to verify directly in ARPES exprents, because this effect
only appears at positive energy, around~ 100 meV. On the other hand, our more subtle
prediction, the combination of superconducting and steegplylux gaps into a single asym-
metric gap, appearing in the anti-nodal region of cupratag mell be within with current
experimental reach. However, it is clear that any energynsgtrization procedure inevitably
destroys such signs in the ARPES spectra. A careful expbaitoval of temperature- and
device-dependent factors from the ARPES intensity will beeesiely important in order to
detect these effects. We hope that our work will stimulaggeexnental and theoretical effort
in this direction.
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Chapter 4.

Single hole and vortex excitation in the
doped Rokhsar-Kivelson quantum dimer
model on the triangular lattice

The main results of this chapter have been published in [&].an introduction to quantum
dimer models, see Section 2.2.

We consider the quantum dimer model on the triangular &timped with mobile holes.
We choose the simplest form of the hole-hopping term whigblires rearrangement of one
dimer. The Hamiltonian reads

Hrsoe = ) [N 1+ 117 )) + (| TN |+ |47) (7))

0.

+ 3 [ (ANA]+ IANAD + 2ulA) (A
— Hpx + H, | (4.1)

where the first sum is performed over all three orientationdhombi and the second sum
is over both up and down triangles and over all three posgibsitions of the hole on the
triangle.

We consider the model [Equation (4.1)] at the RK poiht= v = 1, in the sector with a
single hole. Att = « > 0, the Hamiltonian has the usual “supersymmetric” propsiethe
RK point: Its ground state is exactly known and given by thea¢@unplitude superposition of
all possible states [64], and the quantum mechanics can ppedanto a classical stochastic
dynamics in imaginary time [69]. We further consider theehtdrm H; as a perturbation in
t < 1, u < 1. To simplify the formulas, we assume= ¢ > 0, but our results are extendable
tou # t.

In the unperturbed HamiltoniaHrx, the position of the hole is a static parameter. We
consider the hole on the infinite lattice (or, equivalently,a large finite lattice far from the
boundary). In such a setup there are two degenerate groates sif Hr, for each hole
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position. They correspond to two disconnected (topoldpiectorsH= of the Hilbert space,
characterized by the valuesl of the vison operator

Vx — (_1># of dimers intersecting‘z’ (4.2)

for some pathi’, connecting the hole positionto infinity (in a finite system to the boundary)
[81, 84]. The corresponding ground states are given by thms swer all dimer coverings in the
respective topological sector and are denoted;a%). Note that while the labeling: of the
two sectors{ depends on the choice of the path the sectors themselves do not. Changing
the pathl’, amounts to possible interchangd§ < H, and, thereforeyy (z) < ¢ (x).
This ambiguity reflects the »Zdegree of freedom in labeling the topological sectors, &and i
will play an important role in the motion of the hole with apped vison. Technically, this,Z
gauge may be fixed by specifying (arbitrarily), for eagha reference dimer covering which
belongs toH.

The two topological sectors(= differ by the parity of the dimer intersection at infinity
and hence are indistinguishable by any local operatorgsaicorrelation functions are short-
ranged in the RK model on the triangular lattice [79, 63]). rEfiere, for excitations obtained
from the ground states by local operators (in the vicinity:pfone can establish a one-to-one
linear mapping between the statesHiny and in, . Taking odd and even combinations of the
corresponding states* (z) + ¢~ (z), we obtain the decomposition of the Hilbert space into
even and odd secto?$.°. Those even and odd sectors correspond to the non-visornsoml v
sectors of excitations, respectively, introduced in Red].[7

The key observation for our discussion is that the HamiftorjEquation (4.1)] preserves
the decomposition int@{¢° at every pointz. While it is obviously true forHy, and the
potential part ofH;, one can also easily check that the hopping partHpfdoes not have
matrix elements betweek: and’+?, for neighboring sites andz’. Hence, the excitations
of the moving hole can also be classified into two branchesntn-vison branch [contained
in &, H¢] and the vison branch [containeddn, H?]. This splitting into even (non-vison) and
odd (vison) branches is a generic feature of any pertuatixing of topological sectors in
guantum dimer models.
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4.1. Non-vison excitation branch

The energy spectrum of the non-vison branch can be calculatiérst order in the perturba-
tive expansion inf;. We can fix the phases of all RK ground statéér) = v (x) + ¢ ()
by taking the linear combination of all dimer coverings witle amplitude one (up to normal-
ization). Then, the problem of the moving hole maps onto idpattinding model with the
hopping amplitude

ty = =5 (x) [ Heldg(2") (4.3)

for nearest-neighbar andz’ (here and in the following we always assume normalized state
This amplitude may be converted into an expectation valtleariRK model with a static hole,

ty = 2t (o ()| A)(Aldo(2)) = 2=, (4.4)

whereN; and N3 are the numbers of dimer coverings with one site and one-gitedriangle
removed, respectively. The ratjé1 is well defined in the limit of the infinite system and can
be computed numerically with a suitable method. We haveutatied this coefficient with
a Monte Carlo simulation similar to that in Refs. [63] and [78i0g clusters of toroidal
geometry with up to 1¥17 sites), with the resu%—f = 0.229 £+ 0.001.

Taking into account the potential term fii, and performing the Fourier transformation
in z, the dispersion of the hole without a vison takes the form

Ey = —2t1(cos ki + cos ks + cos ks — 3), (4.5)

wherek, ky, andks are the projections of the vectéron the three lattice directions (with
k1 + ko + k3 = 0).
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Figure 4.1.: These two types of hopping processes set opposite correspoadmtagen the sectors
HE andef,, and therefore cancel each other in (4.6).

4.2. Vison excitation branch

The hopping of a hole with a trapped vison is more complicat€tde phases of the odd-
sector ground stategy(x) = ¢ (z) — ¢, (z), cannot be synchronized invariantly for all
which reflects the frustration of the vison motion [76]. Theddom of the Zgauge [the paths
I, in (4.2) or, equivalently, the reference dimer configunatior eachz] corresponds to the
choice of the overall sign for the states}fy.

Regardless of the chosen gauge, the hopping amplitude vanishes to first order,

(V5 (@) Hil v (2")) = 0 (4.6)

for nearest-neighborsandz’. This can be seen as the cancellation of the two types of hgppi
processes from to z/, corresponding to two possible dimer flips (Fig. 4.1). Eatkthose
dimer flips maps each 6= into one of’ij,. The change in topological sector depends on the
chosen gauge, but the correspondence between the twossk¢tand the two sectoril; is
opposite for the two types of flips. As a result, the corresjioy processes connecting two

ground states)g(x) andy)§(z’) exactly cancel each othér.

A nontrivial hopping appears only to higher order in peraiitn theory for some trajec-
tories. The second-order hopping amplitude

b= 3 () ) Hil ) @)

o' n£0 "
involves excitations)? (z') of Hgx with energies?,,.

Similarly to the cancellation of the nearest-neighbor hoegmmplitude to first order in
perturbation, one can show the cancellation to second arfdére hopping processes —
2’ — 2’ connecting nearest-neighbor and next-nearest-neigitbsifprocesses (a) and (b) in
Fig. 4.2]. One can verify that, in those cases, processemgynt with respect to the linez”
exactly cancel each other.

For an explicit derivation, see [94].
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Figure 4.2.: The two trajectories of the hole exactly cancel each other in the secoedasittie pertur-
bation theory [Equation (4.7)] for (a) nearest-neighbor and (b) neatest-neighbor hop-
pings. The non-vanishing second-order terms are (c) on-site anmtbxthnext-nearest-
neighbor hoppings.

The only nontrivial hopping in the second order occurs fajetctoriest — =/ — x”
involving two links along the same direction [i.e., for the-site energy correction and for
the next-next-nearest-neighbor hopping, processes ¢cjdnn Fig. 4.2]. The corresponding
next-next-nearest-neighbor hopping amplitude [Fig. d)J2(0 second order in perturbation
[Equation (4.7)] may be expressed via dynamic correlatioictions in the RK model with a
static hole at position’,

b = / dr (4 () | Hye™ ™05 H, g (a”))
0
= ¢ dr I 4.8
t / rI(7), (4.8)
where
1(r) = (ola") [ Prare ™05 Pyt (2)) (4.9)
and

Prr = L) (A] = VIV
Poar = V)V = AN AL (4.10)

The dynamic correlation functioh(7) is well defined in the limit of infinite system size and
does not depend on the topological sector in this limit. lyrha computed with a classical
Monte Carlo method as in Ref. [76]. Using clusters of toroidabmetry and up to 117
sites, we find[;" dr I(r) = —1.51 £ 0.08 (observe that it is negative).

Note that the sign of; in (4.8) corresponds to a particular relative gauge chdigments
x andz”: the reference dimer coverings atand z” are connected by two dimer flips on
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Figure 4.3.: (a) We fix the relative gauge at the next-next-nearest-neighbor sitesddiing the refer-
ence configurations i, andH*,, via two consecutive dimer flips on opposite sides of

the linexa'z”. (b) The four sublattlces connected by the hopping of the vison-holedou
state. This composite excitation can only hop by multiples of two lattice periods.

oppositesides of the linecz’z” (Fig. 4.3). One can show that this local gauge convention for
any two sites separated by two lattice periods can be censligtextended to a global gauge
on the sublattice of such sites (with the period of this sttickaequals twice that of the original
lattice). There are four such sublattices (Fig. 4.3), aredhible-vison excitation hops on each
of them independently, without a possibility to cross oweahother sublattice. The resulting
dispersion relation is that of the tight-binding model witie doubled lattice constant and the
hopping amplitude given by (4.8),

E,iv) = —2to(cos 2k; + cos 2kg + cos 2k3) + £ . (4.11)

The on-site energy, is equal to that in the non-vison sector in (4.5). To leadirdgoint, it
is given byg, = 6t;.

The hole-vison excitations with dispersion (4.11) are quply degenerate (by sublattice)
for each value of in the Brillouin zone of the doubled lattice. While we have éxifly
demonstrated this degeneracy to second order, it can bedexteo all orders of perturbation
theory. In fact, this degeneracy is determined by the symesetf the original Hamiltonian
[Equation (4.1)] in the vison sector and can thus be promfoted a perturbative argument to
the exact spectrum. The exact degeneracy can be proventhsitrgnslational invariance of
the Hamiltonian, together with the symmetry under poinension (rotation byr) and time
reversal (see Appendix A). Physically, this degeneracytsaanderstood as the cancellation
of virtual processes for the flux-carrying excitation on thestrated triangular lattice.



Finally, let us note that, while our derivation of the visbale spectrum was formally done
at the RK point, its form and degeneracy are the same in theenlwplid phase away from
the RK point (estimated to extend to the regiaf < 4 < 1 in Ref. [80]), provided the
hole hopping is small. Only the numerical coefficients in llegpping amplitudes, andt,
are modified in this case. Furthermore, our results equaliyyavhen more than one hole is
present in the system as long as the holes are sufficientlypi@rt and do not interact with
each other.

4.3. Summary

In this chapter, we have calculated the dispersion of asingibile hole in the RVB liquid
phase of the doped RK quantum dimer model on the triangulézdatVe find two branches
of excitations: one for the bare hole and the other for a hiden bound state. The effective
motion of the hole-vison state is strongly modified by thefldx associated with the vison.
Interference effects due to lattice frustration reducelthedwidth of this type of excitation
and lead to additional degeneracies. These are genera@rfisgpvhich should be observed in
any doped Z RVB liquid on frustrated lattices.

In our specific model [Equation (4.1)], the energy o$tatic (¢t = 0) vison-hole bound
state equals that of a hole without a vison. In other wordsytkon does not cost any energy
if placed in a hole (while in the bulk, its energy is a finitedtian of .J, see Ref. [76]). In
the limit of a small hopping amplitude the energy of a static excitation is split, with the
bandwidth proportional te for the bare hole and t@z for the hole-vison bound state. As a
result, the two branches intersect each other, with thermim of energy (the ground state)
corresponding to the hole without a vison. For sokni a region close to the boundary of
the Brillouin zone, the vison-hole bound state is lower inrgpehan the bare hole. In a more
general quantum dimer model (or in other RVB-type systenwygver, one may imagine the
situation where the hole-vison bound state constitutegitbend state (in our dimer model,
this may be achieved, for example, by adding ring exchang@wérs around a hole). In such
a case, the doped holes spontaneously generate visond), whittirn, may lead to further
interesting effects, e.g., the modification of the statsstif holes [81, 84].
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Appendix A.

Nonperturbative proof of the 4-fold
degeneracy of the vison branch

From perturbative arguments (see Chapter 4) one can underitat the vison-hole bound
state can only hop by two sites on a straight line. All the pfitecesses cancel due to vison
interference effects. The vison hopping processes thatemtthe different sublattices cancel
each other to all orders in perturbation theory and, as dtreéka vison branch is four-fold
degenerate. The perturbative argument observes thatrgppiween different sublattices
has always a mirror process and the closed loop in the ovgrkggh necessarily contains an
odd number of sites. For such loops, one can show that thee phadways—1, hence the
interference and cancelation of the two paiths.

In this appendix, | want to show that this four-fold degewgraf the vison branch carries
over to the non-perturbative spectrum.

We proceed by showing that the space group representatithe eison must be at least
4 dimensional. By symmetry of the Hamiltonian under the sggoelp transformations, it
follows that the 4 basis states are degenerate in energyhahthe exact (non-perturbative)
spectrum has this 4-fold degeneracy.

Consider the following symmetry generators of the QDM Hamnihn on the triangular
lattice Hr+hole [EQuation (2.44)]:

T, = translation inz-direction, (A.1a)
T, = translation iny-direction, (A.1b)
R = rotation around the origin by, (A.lc)

C' = time reversal. (A.1d)

n fact, for finite systems on a torus, the four topologicaltees mix due to vison motion around the torus.
Since, for a system with a single hole, the lattice must doraa odd number of sites. However, this splitting
is exponentially suppressed with system size.
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One can see that the space-group operations acting on andtag¢evison-hole sector obey the
following commutation relations:

TV15 = —T5T) (A2a)
(RT;)? = —1. (A.2b)

Let|y;) be an eigenstate drishoe, 11, and(73)?, with

Ti[e) = € |ihn) (A.3)

and

<T2)2|¢1> = ei2¢2|¢1> . (A.4)
It is clear from (A.2a) that,) = Th|t;) is an eigenvector of;, with eigenvalue-e':

Ti|he) = TiTolthr) = —ToTi ) = —€'* 1) (A.5)

It follows that |¢);) and |¢») are linearly independent and, therefore, the translatiwasat
least 2 dimensional when acting on vison states. To comfiletenatrix representation @,
we haveTy|is) = (15)%[¢r1) = e*2[¢hn).

We proceed by defining the stategs) = RC|¢1) and|iyy) = Ta|vs) = ToRC|vy). Using
(A.2) we can again show that these are eigenstatés: of

Ti|¢s) = TiRClr) = —R(T1) 7' Clyy) = —Re*Clyy) = —" i) (A.6)

TleL) = T1T2W3> = —T2T1W3> = €i¢1’¢4> . (A-7)

In order to show that the 4 stat@s, ), |i2), |¢3), and|y,) are linearly independent, we
still need to prove that),) and|vs), and|y,) and|y,) are not proportional. We show this by
contradiction. Suppose’s) = ali,). It follows that|y,) = aCRT,|v1) = |a|?(RT)?1) =
—|al?|+¥1), which is impossible (we have used the fact thdt, commutes with complex con-
jugation). The linear independence|gf ) and|v,) can be proven analogously.
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We have proven that the space-group matrix representatiiimgeon vison states are 4
dimensional. Their explicit form is

o O o

RC =

0 0 o2 0 0
—id
0 7T2 = €i¢2 ¢ ’ 0 0 0
0 0 0 0 eiP2
1 0 0 e
0 0 1 0
0 0 0 —e 22
c (A.8)
1 0 0
0 —eZid2

Since these generators are symmetries of the Hamiltonehawe proven that the exact single
hole-vison spectrum is 4-fold degenerate on the triandattce.
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