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Version abréǵee

Cette th̀ese est consacréeà l’étude th́eorique de la supraconductivité à haute
temṕerature critique, d́ectrite comme un isolant de Mott dopé. Dans cette
optique, le mod̀ele t-J sur ŕeseau carré est analyśe par les approches vari-
ationnelles et champ moyen. La thèse est focaliśee sur la construction des
excitations et sur les propriét́es spectrales dans le cadre du concept (dû à
Anderson) de fonctions d’onde dite “resonating-valence-bond” (RVB). Le
mod̀ele quantique de dim̀eres comme mod̀ele pour la phase RVB des isolants
de Mott est aussi exploré.

Dans la premìere partie de la th̀ese, on analyse les fonctions de Green
dans la phase supraconductriceà l’aide des fonctions d’onde variationnelles
pour le mod̀elet-J . Il est d́emontŕe que le poids spectral totale est diminué
par une renormalisation dépendante de l’impulsion, et que la projection de
Gutzwiller produit une asyḿetrie particule-trou dans la renormalisation des
poids spectraux.

La deuxìeme partie est consacréeà l’analyse des fonctions de Green dans
la phase pseudogap des cupratesà l’aide d’une approche SU(2) de champ
moyen òu le param̀etre d’ordre fluctue entre le supraconducteurd-wave et
l’ état staggered-flux non-supraconducteur. Ce modèle pŕedit un spectre de
photóemission avec un gap asymétrique qui interpole entre le gap supra-
conducteur centré sur l’́energie de Fermi et le gap asymétrique de l’́etat
staggered-flux. Cette asymétrie du gap change de signe aux points où la
surface de Fermi croise la diagonale(0, π)-(π, 0).

Dans la dernìere partie de la th̀ese, on consid̀ere les excitations de trous
et de vortex dans la phase liquide du modèle quantique de dim̀eres Rokhsar-
Kivelson sur ŕeseau triangulaire. On montre que le mouvement d’un trou
li é à une excitation topologique est fortement contraint du fait des effets
d’interférence.

Mots clefs: supraconductivit́eà haute temṕerature critique, resonating valence
bond, pseudogap, modèles sur ŕeseau,́electrons fortement corrélés, mod́ele
t-J , Monte Carlo variationnel, fonction d’onde de Gutzwiller, isolant de
Mott doṕe, mod̀ele de dim̀eres quantique

iii



iv



Abstract

This thesis is devoted to a theoretical study of high-temperature superconduc-
tivity from the viewpoint of a doped Mott insulator. To this end, the square-
latticet-J model is analyzed by variational and mean-field approaches.The
thesis focuses on the construction of excitations and on spectral properties
in the framework of Anderson’s concept of resonating-valence-bond wave-
functions. The quantum dimer model as a toy model for the resonating-
valence-bond phase of Mott insulators is also explored.

In the first part of the thesis, the single-particle Green’s functions in the
superconducting phase are analyzed using Gutzwiller-projected variational
wavefunctions for thet-J model. It is found that the overall spectral weight
is reduced by a momentum-dependent renormalization, and that the projec-
tion produces a particle-hole asymmetry in the renormalization of the spec-
tral weights.

The second part analyzes the Green’s functions in the pseudogap phase
of the cuprates within an SU(2) mean-field approach where theorder
parameter fluctuates between thed-wave superconductor and the non-
superconducting staggered-flux state. The model predicts aphotoemission
spectrum with an asymmetric gap structure interpolating between the super-
conducting gap centered at the Fermi energy and the asymmetric staggered-
flux gap. This gap asymmetry changes sign at the “hot-spots” where the
Fermi surface crosses the diagonal(0, π)-(π, 0).

In the last part of the thesis, single hole and vortex excitations in
the liquid phase of the triangular-lattice Rokhsar-Kivelson quantum dimer
model are considered. It is found that the motion of a hole bound to a topo-
logical excitation is strongly constrained due to interference effects.

Keywords: high-temperature superconductivity, resonating valencebond,
pseudogap, lattice models, strongly correlated electrons, t-J model, vari-
ational Monte Carlo, Gutzwiller-projected wavefunction, doped Mott insu-
lator, quantum dimer model
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Chapter 1.

Introduction

1.1. A brief history of superconductivity

Superconductivity was first observed by Kammerlingh Onnes in 1911. When he cooled mer-
cury to the temperature of liquid helium at 4 Kelvin (-269◦C), its resistivity dropped to an
unmeasurably small value. Subsequent experimental advances were able to produce even
lower temperatures and it was found that mostmetalsare in fact superconductors at very low
temperature.
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Figure 1.1.: Critical temperature of some superconductors as a function of their year of discovery [8].
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2 Introduction

In 1957, Bardeen, Cooper, and Schrieffer (BCS) [1] proposed a microscopic theory which
described the superconducting state as a superfluid of paired electrons. In the BCS theory,
these so-calledCooper pairsof electrons are in a bound state due to the exchange of lattice
vibration modes calledphonons. The phonons induce an effective attraction between elec-
trons. Within BCS theory, all superconductors which were known at this time could be well
understood.1

The superconductors known at that time had relatively low critical temperatures, above
which they are well-conducting metals. It came therefore asa surprise to the physics commu-
nity when in 1986, Bednorz and M̈uller [2] reported the discovery of a superconductor that
broke this rule. They found that the La2−xSrxCuO4 (LSCO) compound, a bad conductor at
higher temperatures, starts to be superconducting alreadyat 30 Kelvin. A few months later,
this Tc could be improved to spectacular 90 Kelvin in the similar YBCO compound and ex-
ceeded for the first time the boiling point of nitrogen (77 Kelvin).2 The superconductivity at
relatively high temperature in metal-oxide compounds, which had previously been known as
electric insulators, indicated that a new class of materials had been discovered. This initiated
the field of research which is called high-temperature (or unconventional) superconductivity
today.

In the 20 years following the discovery of the first high-temperature superconductor, several
other compounds with even higher critical temperatures were synthesized. The highest critical
temperature under ambient pressure reported so far is 139 K in a mercury-barium-thallium-
copper-oxide compound. All these chemically very complicated compounds share similar
structures. They are built from layers of copper-oxide (hence their namecuprates), separated
by layers of rare-earth or alkaline-metal salts.

Despite intense effort during the last 30 years, no unifyingtheoretical description of high-
temperature superconductivity has been found to date. A plethora of theoretical approaches
and ideas were proposed, many were abandoned, others are competing or subject to contro-
versy. Starting for example from the viewpoint of strong-correlation physics (which I will
make more precise later), the high-temperature-superconductivity problem is very similar to
quantum chromodynamics at finite fermion density [3]. Unfortunately, most if not all conven-
tional tools of theoretical physics are not applicable to such systems.

In the meantime, empirical efforts have not been hindered bythe lack of theoretical under-
standing. Enormous quantities of experimental data are available today. The quest for an
understanding of these materials has been the driving forcein pushing experimental techniques
like photoemission spectroscopy or tunneling microscopy to an unprecedented accuracy and
reliability.

The recent developments in the research on high-temperature superconductivity indicate
that, apart from the high critical temperatureTc, the superconducting phase of the cuprates is

1The Nobel prize for the work of BCS was awarded in 1972.
2Bednorz and M̈uller received the Nobel prize for their discovery only one year later, in 1987.
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rather conventional. The superconducting cuprates share many properties with conventional
metallic superconductors. In contrast to this, the“anomalous” normal stateabove the critical
temperature shows very unusual and surprising properties which indicate that a radically new
state of matter may have been discovered.

Apart from the fundamental scientific interest in these materials, we should not forget that
the research has been motivated over the decades by the enormous technological impact that
superconductivity at room temperature would undoubtedly have on our society. Lossless trans-
port of electric current is only one application, the possibility to create or measure magnetic
fields another. However, as the history of fundamental research shows, the most important
applications are rarely foreseen in advance.



4 Introduction

1.2. Phenomenology of high-temperature superconductors

In order to get a picture of the high-temperature superconductors (HTSC), let me introduce the
compound La2−xSrxCuO4 (LSCO) as an example. The chemical structure of this compound
is depicted in Fig. 1.2. All cuprates show a similar layered structure with a plane of copper
atoms arranged on a rather perfect square lattice. The inplane oxygen atoms sit on the bonds
of the square lattice between the copper atoms. The different cuprate materials are mainly
distinguished by the insulating crystal between the copper-oxide layers. In the case of LSCO,
the interlayer structure is built up of lanthanum.

Figure 1.2.: Crystal structure of the La2CuO4 compound. Left are copper-oxide and lanthanum layers
in the c-direction, right is a single copper-oxide layer. The inplane distance between
copper atoms is roughlya ≃ b ≃ 5Å and the distance between copper-oxide layers is
c ≃ 13Å [9]. Upon doping, the lanthanum atoms are replaced by strontium or barium
atoms. Picture taken from [7].

By doping the out-of-plane crystal structure, i.e. by replacing some of these atoms, the
experimentalist can control the number of charge carriers in the CuO2 plane. In the case of
LSCO, doping can be achieved by replacing lanthanum by strontium or barium atoms. De-
pending on the dopant atom, one may eitheraddelectrons to the copper-oxide plane (electron
doping) orremoveelectrons from the copper-oxide plane (hole doping). Both electron and
hole doping have similar effects on the cuprates. However, in this thesis, I am concentrating
on the hole-doped cuprate superconductors.

A typical experimental phase diagram of a hole-doped cuprate superconductor as a func-
tion of temperature and doping is sketched in Fig. 1.3. Athalf filling (in absence of a dopant)
and below the ordering temperatureTN ≃ 325 K [10], the material is antiferromagnetially
ordered and insulating. As the hole-dopant concentration is increased, the system goes through
the pseudogapphase and finally becomes superconducting. At small doping,the super-
conducting transition temperature starts to rise and reaches a maximum atoptimal doping.
Then, the superconductivity vanishes again at a higher doping. Inside thissuperconducting
dome, the material has all the well-known characteristics of a superconductor: zero electrical
resistivity, Meissner effect (expulsion of electromagnetic fields), etc. Cuprate superconduc-
tivity is of type II, i.e. a strong magnetic field produces vortices inside the superconductor
and a sufficiently strong field can completely destroy the superconductivity. At higher doping
(far in theoverdopedregion, above optimal doping) or at temperatures above thepseudogap
temperatureT ∗, the material covers all aspects of a conventional metal with a gapless Fermi
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Figure 1.3.: A typical experimental phase diagram of the hole-doped cuprates. Closeto half filling,
an antiferromagnetic insulator is found with a Neel temperatureTN of several hundreds
of Kelvin. As holes are doped into the copper plane, a superconducting phase appears
between 5% and 25% doping, optimal doping is reached around 17% in LSCO.

surface and a finite resistivity. The nature of the pseudogapphase appearing at intermediate
temperature (betweenTc andT ∗) in theunderdopedpart of the phase diagram (below optimal
doping) is still under debate. Ongoing experiments are trying to characterize this phase. It
appears that the pseudogap phase is normal in the sense that it is not superconducting. How-
ever, angle-resolved photoemission experiments show a partially gapped Fermi surface or
Fermi arcs. This property is highly unusual and not observed in normal metals. For this rea-
son, the pseudogap phase was also calledstrange metalby Anderson [11]. In Section 3.4 of
this thesis, I propose a theoretical model for this phase.

The electronic properties of the superconducting phase of HTSC is an important subject of
this thesis. From the experimental point of view, it is now well established that the symmetry
of the superconducting gap is nots-wave, as it is for most conventional superconductors. The
superconducting order parameter hasd-wavesymmetry, i.e. the gap vanishes at a point in the
Brillouin zone (at thenodal point) and the order parameter changes sign when the plane is
rotated by 90 degrees.3

There are many more experimental aspects of high-temperature superconductivity. How-
ever, I do not want to go into greater detail at this point, butintroduce further aspects in due
course.

3The symmetry of the superconducting order parameter led to considerable controversy among experimentalists
which was settled only a few years ago. The correct theoretical prediction, however, was given in the late
1980s (see Section 2.1).
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1.3. Doping a Mott insulator: physics of strongly interacting
electrons

The approaches and results of this thesis are rooted in the strong-coupling point of view. Based
on this view, the striking phenomena in cuprate superconductors have their origin in the large
Coulomb repulsion between the charge carriers. This repulsion energy between the charge
carriers is much larger than their kinetic energy in the solid and this makes traditional tools of
solid state theory, like band theory or perturbation in the interaction strength, of little use. In
this section, I will introduce the strong-coupling approach to the problem of unconventional
superconductivity.

Let me first remind the electronic configuration of the atoms in the CuO2 plane (Fig. 1.2).
The copper ions on the square lattice have Cu2+ charge with a single electron missing in the
3d-shell. The oxygen atoms on the bonds of the lattice carry a single negative charge.

It was proposed by P. W. Anderson [12] that the electrons in the partially filledd-shell
of the copper atom are delocalized in a single band of the 2-dimensional solid. Due to the
large on-site Coulomb integralU of thedx2−y2 orbitals, these itinerant electrons on the same
site strongly interact and their quantum mechanics is well approximated by the single-band
Hubbard model (1.1) [13]. The nearest-neighbor hopping integralt involves the intermediate
oxygen atom and is therefore rather small,U ≃ 12t. Further-neighbor hoppings are even
smaller due to the geometry of thedx2−y2-orbitals. The dopant removes electrons from the
copper site (Cu3+-ions are formed) and holes are introduced into the Hubbard model.

HU = −
∑

i,j,σ

tijc
†
iσcjσ +

U

2

∑

i,σ

c†iσciσc
†
iσ̄ciσ̄ (1.1)

1.3.1. Mott transition

In the limit U → ∞, it is easy to see that the ground state(s) of the half-filled Hubbard
model (1.1) is localized with exactly one electron per site,

|MI〉 = Πic
†
iσi
|0〉 . (1.2)

This limit is an example of a so-calledMott insulator, in contrast to the more conventional
band insulator. In a band insulator, the conduction electrons occupy a completely filled band
and the band gap prohibits conduction. In a Mott insulator onthe other hand, the electrons
need to overcome the (large) Mott gapU to create doubly occupied sites and to delocalize.

In the other limit,U → 0, the electrons are completely delocalized. E.g. in the caseof
nearest-neighbor hopping, the electrons are in a bandεk = −2[cos kx + cos ky]. In this limit,
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the exact ground state is also known. It is the completely filled Fermi sea,

|Fs〉 = Πεk<0c
†
k↑c

†
k↓|0〉 . (1.3)

For intermediateU , the ground state is much more complicated. It is believed that there is
a criticalUc ≃ 4t where theMott transition[14] from a conductor to a Mott insulator takes
place.4

In the cuprates, the valence electrons occupy a half-filled band and they would be con-
ducting if the Coulomb integralU was moderate. However, the on-site Coulomb repulsion in
cuprates is so large that the undoped material is deep in the Mott-insulating phase (U ≃ 12t).

1.3.2. From Hubbard to thet-J model

The Hubbard model in the limitU ≫ t can be transformed to a low-energy effective model
in the subspace with less than two electrons per site (ni < 2) [15]. Doubly occupied sites
cost a large energy of orderU and can be neglected at low temperature. One can find a
unitary transformationS which block-diagonalizes the Hubbard model by eliminatingmatrix
elements that mix singly occupied with doubly occupied states (this is the so-calledSchrieffer-
Wolff transformation), Heff = e−iSHUe

iS. The unitary transformationS can be found to any
order int/U . In the following, I will restrict myself to a model with uniform nearest-neighbor
hopping. Without going through the details, the result to second order int/U is [5, 15]:

Heff |ni<2 = − t Pd

∑

〈i,j〉,σ
c†iσcjσPd

+
t2

U
Pd

∑

i,τ1,τ2,σ

[c†i+τ1σ̄c
†
iσciσ̄ci+τ2σ − c†i+τ1σniσ̄ci+τ2σ]Pd +O(

t3

U2
) .

(1.4)

whereHeff |ni<2 is the matrix acting only on the low-energy space of vectors without doubly
occupied sites.i+τ denotes a site which is nearest neighbor to sitei. TheGutzwiller projector
Pd in (1.4) is needed to ensure that the hopping remains in this low-energy space. It is defined
as

Pd = Πi[1 − ni↓ni↑] . (1.5)

4This discovery is due to Sir Nevil Francis Mott, who won the Nobel price for his work on strongly correlated
electrons in 1977, together with P. W. Anderson and J. van Fleck.
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The terms in the sum withτ1 = τ2 of the effective model (1.4) gives an antiferromagnetic
interaction between the electron spins on nearest-neighbor sites:

HJ =
t2

U

∑

i,τ,σ

[c†i+τ,σ̄c
†
iσciσ̄ci+τ,σ − c†i+τ,σniσ̄ci+τ,σ] = J

∑

〈i,j〉
[Si · Sj −

ninj

4
] (1.6)

with J = 4t2

U
andS = 1

2

∑

α,β c
†
ασαβcα. The remaining term,

H3 =
J

4

∑

i,τ1 6=τ2,σ

[c†i+τ1,σ̄c
†
iσciσ̄ci+τ2,σ − c†i+τ1,σniσ̄ci+τ2,σ] , (1.7)

is the so-called3-site-hopping term.

The t-J model, in which I am mainly interested here, is this effective model without the
3-site-hopping term:

Ht-J = − t Pd

∑

〈i,j〉,σ
c†iσcjσPd + J

∑

〈i,j〉
[Si · Sj −

ninj

4
] . (1.8)

In the limit of vanishing doping (x → 0), it is clear that the Gutzwiller-projected hopping
term Pdc

†cPd is zero: every site is singly occupied and the hopping necessarily creates a
doubly occupied site. In terms of the so-called Gutzwiller approximation (Section 2.1.3), the
Gutzwiller-projected hopping matrix element is reduced bya factor of orderx. In the same
sense,H3 ∼ xt2, and the 3-site-hopping term is negligible with respect toHJ ∼ t2 at low
doping. At half filling, the electrons are localized and the only remaining term isJSi ·Sj with
J > 0. This is theantiferromagnetic Heisenberg model. The antiferromagnetic interaction
between the electron spins can be understood intuitively from the concept of virtual hopping:
Even though the electrons are localized, opposite spins on nearest-neighbor sites are favored
because they have in principle the possibility to hop. On theother hand, the same spin state on
nearest-neighbor sites are forbidden to hop because of the fermionic statistics of the electrons
(the Pauli principle).

Note that a perfect two-dimensional antiferromagnetic Heisenberg model orders only at
zero temperature (TN=0). In cuprates, however, there is a weak interlayer coupling which
explains the observed ordering at finite temperature in these materials.
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The t-J model can conveniently be written in terms of Gutzwiller-projected creation and
annihilation operators,

c̃σ = cσ[1 − nσ̄] . (1.9)

This replaces the Gutzwiller projector in the Hamiltonian (1.8) and the hopping term of the
model is simply

∑

〈i,j〉,σ
c̃†iσ c̃jσ . (1.10)

1.3.3. Zhang-Rice singlets

There is an alternative way to directly construct an effective t-J model for the CuO2 lay-
ers which was proposed by Zhang and Rice [16]. The undoped material is clearly an anti-
ferromagnet for thed-holes on the Cu2+-ions. This motivated Zhang-Rice to start from the
Heisenberg model. In the Zhang-Rice scenario, doping does not remove a furtherd-electron
to create a Cu3+-ion, but instead it removes ap-electron from the oxygen atom in the plane.
Hybridization favors a singlet superposition of ap-hole delocalized on the four oxygen atoms
surrounding a Cu2+-ion and thed-hole of the central copper atom. Zhang-Rice constructed
Wannier states for such a singlet. Ap-hole in this state can tunnel to a nearest-neighbor site
and form another singlet, but only if no singlet is already occupying the site. This results in
the constrained hopping of holes in the antiferromagnetic background, precisely described by
thet-J model.
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1.4. Outline of this thesis

The remaining part of this thesis is organized in the following way. In Chapter 2, I introduce
the theoretical tools which I use to study high-temperaturesuperconductivity and doped Mott
insulators. I give an introduction to Anderson’s variational resonating-valence-bond construc-
tion and to the theoretical developments that emerged from Anderson’s proposal. In the case
of the variational Monte Carlo method, some technical details developed by myself are also
given.

In Chapter 3, I analyze the electronic properties of doped Mott insulators and I discuss
their experimental implications. In the first part, the general properties of spectra within
a Gutzwiller-projected Hilbert space are studied. In the second part, I analyze the spectral
properties of Gutzwiller-projected variational wavefunctions in the superconducting phase of
cuprates. In the last part of that chapter, I study the spectral properties in the disordered phase
of the pseudogap region at the mean-field level.

Chapter 4 is devoted to a toy model for the resonating-valence-bond liquid phase: the
quantum dimer model on the triangular lattice. This model provides an example of a topo-
logical phase and is therefore interesting on general grounds. There are proposals and indica-
tions that the cuprate superconductors close to half fillingmay be in such a topological phase.
In this last chapter, I analyze dynamical properties of a single hole in such a phase in the
presence and absence of a topological excitation.
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1.5. Notational conventions and abbreviations

In this thesis I use the following notations and conventions.

(i) ciσ is the annihilation operator for an electron with spinσ in the Wannier state localized
at the lattice siteri. c

†
iσ is the corresponding creation operator. These operators follow

the usual anti-commutation relations{ciσ, cjσ′} = 0 and{ciσ, c†jσ′} = δijδσσ′. The spin
indexσ takes values↑ and↓ and the opposite spin toσ is written as̄σ.

(ii) ckσ is the Fourier transform,ckσ = 1√
L

∑

j e
−ik·rjcjσ andL is the total number of lattice

sites.

(iii) The electron-number operator is denoted byniσ = c†iσciσ andni =
∑

σ niσ.

(iv) The vacuum state for electrons is denoted by|0〉, i.e.ciσ|0〉 = 0.

(v) The hole-doping level (concentration of holes with respect to half filling when there is
exactly one electron per site) of the cuprate layer is denoted byx = L−N

L
. It takes values

x ∈ [0, 1]. To avoid confusion, I usêN =
∑

i ni to denote the total number operator and
N for the total number of electrons.

(vi) 〈i, j〉 denotes pairs of indices on nearest-neighbor sites and〈〈i, j〉〉 denotes pairs of in-
dices on next-nearest neighbor sites of a lattice.

(vii) {σi, i = 1, 2, 3} are the Pauli matrices:

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

.

(viii) “column-vectors” (Nx1-matrices) are written in bold font. A superscript T denotes ma-
trix transposition:vT = (v1, v2, . . .). The cartesian product may be written with a dot:
u · v =

∑

i uivi.

(ix) The spin operator for electrons is defined asS = 1
2

∑

α,β c
†
ασαβcβ. The raising operator

is S+ = S−†
= c†↑c↓.

(x) The symbol# is sometimes used as abbreviation for “number of”.

(xi) the curly brackets stand for the anti-commutation,{A,B} = AB + BA. The square
brackets stand for the commutation,[A,B] = AB −BA.

(xii) I use the physicist’s jargon for the word “finite”. A number is finite if it is real and not
zero.

(xiii) The Gutzwiller-projection operator is denoted byPd = Πi[1 − ni↑ni↓].

(xiv) The projection operator to a given number of particlesN is denoted by
PN =

∫ 1

0
dα e2πi(N̂−N)α.
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The following abbreviations are used in this thesis.

AF antiferromagnet(-ic)

ARPES angle-resolved photoemission spectroscopy

BCS Bardeen-Cooper-Schrieffer

FS Fermi surface

GA Gutzwiller approximation

HTSC high-temperature superconductivity

MC Monte Carlo

QDM quantum dimer model

QP quasiparticle

RK Rokhsar-Kivelson

RVB resonating-valence-bond

SC superconductor / superconductivity

SF staggered-flux

VB valence bond

VBS valence-bond-solid

VMC variational Monte Carlo
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Chapter 2.

Resonating-valence-bonds: a variational
view on high-temperature
superconductivity

In the introductory Chapter 1, I have argued that there are good reasons to believe that many
phenomena of cuprate superconductors can be understood within repulsive, large-U fermionic
Hubbard ort-J models (forU ≃ 12t or t ≃ 3J). However, these strong-coupling models
are difficult to explore theoretically, because there is no small parameter which would allow
to expand around a known limit. For example, doping as small parameter is not suitable:
Even a single mobile hole in the antiferromagnetic background introduces a new degree of
freedom (the charge) and may affect the system in a nonperturbative way. Unbiased numerical
approaches likeexact diagonalizationor quantum Monte Carlo methodsare either bound to
very small clusters (even on modern computers) or suffer from fermionic sign problems [17].
In this thesis, I adopt a different approach, avariationalone. Although this approach is biased
(by hopefully correct physical insight), it has the advantage of being nonperturbative and can
be applied to large systems.

?

Figure 2.1.: An artist’s view of geometric frustration: three classical spins with antiferromagnetic
interaction on a triangle. Two of the spins minimize their energy by pointing up and
down, respectively. The third spin is frustrated because it cannot minimizethe interaction
energy on the two bonds simultaneously.

15
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2.1. Anderson’s wavefunction

In the undoped case, the square-lattice Heisenberg model isknown to have a ground state
with antiferromagnetic long-rang order. However, this conclusion is not very robust. For ex-
ample, the Mermin-Wagner-Hohenberg theorem [18, 19, 20] implies immediate destruction
of long-range order at finite temperature. Other effects like geometric frustration (e.g. on the
triangular lattice or by further-neighbor interactions onthe square lattices; see Fig. 2.1) or
a mobile hole may destroy the antiferromagnetic ground state. In the year 1972, even be-
fore the discovery of HTSC, Anderson considered alternativeground-state wavefunctions on
the square lattice which can compete with the Neel antiferromagnet [21]. Anderson was in-
spired by L. Pauling’s work, who had successfully describedthe chemical structure of benzene
molecules as quantum-mechanical superpositions of different valence-bond configurations
[hence the nameresonating-valence-bond(RVB); see Fig. 2.2]. Pauling had also applied these
ideas to valence electrons in solids [22]. After the discovery of HTSC, Anderson developed
the RVB idea further and adapted it to the case of the cuprates[12].

Figure 2.2.: The double-bonds in benzene are not localized and may be pictured as a quantum-
mechanical superposition of two classical states. Such states where namedresonating-
valence-bonds(RVB) by L. Pauling.

Anderson was motivated by the fact that for an antiferromagnetic Heisenberg model on an
unfrustrated lattice with coordination numberz, the Neel state has a variational energy of−Jz

4

per site. On the other hand, if we imagine a product state withpairs of (AF-coupled) spins in
a singlet state, then a variational energy of−3J

8
per spin is obtained. For a chain (z = 1), the

singlet state is a better variational state than the Neel state.1 As we go to higher coordination
numbers, the Neel state becomes a better variational state.Anderson proposed that such a
product state of spin singlets could be stabilized even in two dimensions by letting the singlet
bonds resonate between different sites.

More formally, we define

b†ij =
1√
2
[c†i↑c

†
j↓ − c†i↓c

†
j↑] (2.1)

1Indeed, it is know from Bethe’s solution that the antiferromagnetic spin chain has a singlet ground state [23,
24].
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the creation operator for a singlet on bond(i, j). A state in a “valence-bond” configuration
may be constructed by

|VB〉 = Π(i,j)b
†
ij|0〉 (2.2)

where(i, j) are pairs of sites whichcover the entire latticeand no site is repeated in the
product. The last point is important, because if sites were repeatedin the product, this would
create doubly occupied sites in terms ofc-electrons,c†i↑c

†
i↓. Such states are not in the Hilbert

space of the Heisenberg Hamiltonian or, in terms of electronic models, they cost a large energy
of orderU . There are many VB states possible on a given lattice and the counting of them
may be formulated in terms of close packing ofhardcore dimerson the lattice.2 Chapter 4 will
be devoted to the quantum dynamics of such dimer coverings. Note that the singlet-product
states corresponding to different close-packed dimer coverings are not orthogonal in general.
Note also that the state|VB〉 is a spin singlet, i.e.S2

tot|VB〉 = 0.

A wavefunction with resonating singlets and no translational symmetry breaking (termed
spin liquidby Anderson) may be constructed in the following way:

|RVB〉 = Pd[
∑

i,j

ã(ri − rj)b
†
ij]

N/2|0〉 = Pd[
∑

i,j

a(ri − rj)c
†
i↑c

†
j↓]

N/2|0〉 (2.3)

wherea(r) = ã(r) + ã(−r) andN is the (even) number of electrons on the lattice.N = L
is chosen for a spin wavefunction (half filling) andN < L for an electronic (doped) wave-
function. The sum in (2.3) creates spin singlets between thesitesri andri+r with probability
a(r) for all i. The product produces states containingN

2
singlets. Those states which contain

doubly occupied sites are then removed by the Gutzwiller projector,Pd = Πi[1 − ni↑ni↓].
|RVB〉 is a superposition of all singlet-product states with bond occupation probabilitya(r).
I do not want to go into the details of the classification or phenomenology of quantum spin
liquid states, but instead refer to the literature [59, 60].Let me just note that such spin states
(at half filling) are not characterized by a broken symmetry and conventional order parameter
(like e.g. the Neel state is). Spin liquid states are insteadcharacterized bytopological order. I
will illustrate this concept in the case of the quantum dimermodel.

Written in Fourier space, the RVB state (2.3) turns out to be a Gutzwiller-projected BCS-
wavefunction at fixed particle number, as it can be easily seen from the following calculation,

|RVB〉 = Pd[
∑

k

akc
†
k↑c

†
−k↓]

N
2 |0〉 ∝ PdPN

2
e
∑

k
akc†

k↑
c†
−k↓|0〉

= PdPN
2
Πk[1 + akc

†
k↑c

†
−k↓]|0〉 ∝ PdPN

2
|BCS〉 .

(2.4)

2Also known in mathematics as theperfect matching of a graph.
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I have used the projection to a given number of electrons,PN =
∫ 1

0
dα e2πi(N̂−N)α, and

ak =
∑

i a(ri)e
−iri·k, the Fourier transform of the singlet distribution function. In BCS

terminology [25],uk = 1√
1+a2

k

, vk = ak√
1+a2

k

, and|BCS〉 = Πk[uk + vkc
†
k↑c

†
−k↓]|0〉.

Anderson’s proposal to understand high-temperature superconductors as a doped spin
liquid is very elegant and appealing. If the Gutzwiller-projected BCS wavefunction has particle-
hole mixing (i.e.0 < u2

k
< 1), then superconductivity will naturally emerge from the same

wavefunction, as holes are added. To understand this, consider the off-diagonal long-range
order parameter that characterizes a superconducting state [6, 26],

ΦSC
ij = lim

r→∞
〈ciσcjσ̄c†i+rσc

†
j+rσ̄〉 . (2.5)

From combinatorial arguments, known as Gutzwiller approximation (see Section 2.1.3), one
can understand that this quantity vanishes likeΦSC

ij ∝ x2Φ0
ij as dopingx goes to zero.Φ0

ij is
the off-diagonal long-range order of the unprojected wavefunction. The vanishing is due to
the Gutzwiller projector and is not a property of the wavefunction before projection. On the
other hand, magnetic correlations of the form

〈Sz
i S

z
j 〉 (2.6)

are only weakly affected by the Gutzwiller projector near half filling.

Indeed, it was found by Gros [27] and Yokoyamaet al. [28] in 1988 that a BCS wave-
function with ad-wave gap symmetry,

u2
k

=
1

2
[1 +

∆(cos kx − cos ky)
√

(cos kx + cos ky − µ)2 + ∆2(cos kx − cos ky)2
] , (2.7)

is a favored variational state of thet-J model for a large range of doping. The energy gain of
this state is mainly due to the spin-exchange term as we expect from Anderson’s arguments.
It took many years until the experimental technique of angle-resolved photoemission spec-
troscopy (ARPES) [29, 30] was accurate enough to confirm thed-wave gap symmetry in the
superconducting phase of the cuprates. In fact, the first unambiguous experimental confirma-
tion came from phase sensitive measurements with Josephsonjunctions [31, 32]. Since these
early studies, the variational approach to thet-J model has been refined and extended by many
research groups [33, 34, 35, 36] and today we enjoy a quite complete variational picture of
thet-J model and the cuprate superconductors within this framework. The main results were
summarized in recent review articles [3, 4, 5, 6]. In the following chapters, I will remind some
of these results where necessary.
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2.1.1. (Re-)introduction of double occupancy

The RVB wavefunction (2.4) is a variational state for thet-J model. However, one may also
want to use this type of wavefunction to study the Hubbard model. There are two approaches
in the literature which allow to introduce doubly occupied sites and to extend this variational
approach to the Hubbard model.

In the first approach, one rotates the wavefunction back to the Hubbard model using the
inverse Schrieffer-Wolff transformation introduced in Section 1.3.2:

|RVB,U〉 = e−iS|RVB〉 = |RVB〉 +
t

U
S1|RVB〉 + . . . (2.8)

Doubly occupied sites can be reintroduced to any desired order in t/U and small quantita-
tive changes of some matrix elements were reported for the cuprates [27, 33]. However, no
qualitatively different conclusions are expected if we aredeep in the Mott-insulating phase
t≪ U .

An alternative approach is the so-calledpartial-projection operatorPg instead of the
Gutzwiller projector [36].Pg has an additional variational parameterg and the states with
doubly occupied sites are not completely suppressed but only reduced by a factor1 − g:

Pg = g
∑

i ni↑ni↓ = Πi[1 − (1 − g)ni↑ni↓] . (2.9)

Such wavefunctions are particularly useful in the case of intermediateU , when the system
is in the vicinity of a Mott transition. The disadvantage when studying superconductivity
in a doped Mott insulator is that partially projected wavefunctions generally (super-)conduct
in the half-filled limit, x → 0. The possibility that such states are realized in the cuprates
was proposed by R. Laughlin who called themgossamer superconductors[37, 38]. Note,
however, that due to the invertibility ofPg, it is easy to write down a Hamiltonian for which the
Pg-“projected” mean-field state is an exact eigenstate.3 This is not possible for the Gutzwiller
projectorPd = Pg=0 and the limitg → 0 is clearly not analytic.

In this thesis, I choose to work with the puret-J model without perturbative or explicit
inclusion of doubly occupied sites.

3Note that the terminology “partial projection” is unfortunate, sincePg is not a true projection operator (i.e.
P 2

g 6= Pg).
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2.1.2. Variational Monte Carlo method

The shift of problem from solving the full Hubbard Hamiltonian (1.1) to working with vari-
ational wavefunctions of thet-J model has simplified our task. However, it is still formidable
to make quantitative predictions. The local constraint implemented by the Gutzwiller projec-
tor Pd is difficult to handle both analytically and numerically. This is expected, sincePd in-
corporates the strong interaction between the electrons inthe copper-oxide layer which makes
this problem so distinct from traditional mean-field theories or other weak-coupling expan-
sions of many-body physics. In this thesis, I mainly rely on the approaches described in this
and the following sections.

The variational Monte Carlo method (VMC) [27, 28] is a numerical tool that allows to
compute the expectation value of an operator in a given many-body wavefunction within small
error bars. Here, I apply it to electronic wavefunctions on finite lattices, where it is highly
efficient: It allows to handle wavefunctions on large clusters up to 500 sites within a reasonable
time frame of the order of days on modern computer processors. A particular advantage of
VMC is that it allows to implement the Gutzwiller constraintni < 2 exactly.

A Markov-chain random walk is performed in theSz-basis for a given wavefunction. This
allows to write the matrix element of an operator as an average taken over the random walk,

〈ψ|O|ψ〉
〈ψ|ψ〉 =

∑

α

〈ψ|α〉〈α|O|ψ〉
〈ψ|ψ〉 =

∑

α

|〈ψ|α〉|2
〈ψ|ψ〉

〈α|O|ψ〉
〈α|ψ〉 (2.10)

The states|α〉 and|β〉 are real-space spin states (Sz eigenstates). The form (2.10) suggests a
discrete probability distribution on the states|α〉,

p(α) =
|〈ψ|α〉|2
〈ψ|ψ〉 ; p(α) > 0 ;

∑

α

p(α) = 1 (2.11)

Such a probability distribution can be generated by a randomwalk with transition probability

P (α→ α′) = min[1,
p(α′)

p(α)
] = min[1,

∣

∣

∣

∣

〈α′|ψ〉
〈α|ψ〉

∣

∣

∣

∣

2

] . (2.12)

This transition probability satisfies the detailed balancecondition and is known to generate
the equilibrium distributionp(α) [17, 39]. The task is now to efficiently generate a new spin
configuration from a given one. I do this by picking a random site and exchange the spin or
hole on this site with one on a random neighboring site of the square lattice. The projection of
a fermionic wavefunction to a given electron configuration (non-magnetic, withN↑ = N↓) is
aN↑ ×N↑ Slatter determinant

〈α|ψ〉 ∝ det aij . (2.13)
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In the case of a mean-field wavefunction|ψ〉 = |RVB〉, the matrixaij is precisely the
singlet-bond distribution functiona(r) which appeared in the definition of the RVB wave-
function (2.3):

aij = a(ri↑ − rj↓) , (2.14)

whereri↑ andrj↓ are the positions of the up and down spins, respectively, in the state|α〉. Note
that I need to choose a particular ordering of the sitesi = 1 . . . L, in order to uniquely define
the sign of〈α|ψ〉. The advantage of exchanging particles to generate a randomwalk becomes
now apparent: The new position of an up spin amounts to replacing a row, a new position for a
down spin amounts to replacing a column in the matrixaij. Using well-known formulas from
linear algebra, one can efficiently calculate the new determinant in terms of the inverse matrix.
By storing and updating both the matrixaij and its inverse, one can greatly improve the speed
of the Monte Carlo (MC) algorithm, an idea due to Ceperley and Chester [40].

In the following, I will give an example where a MC step proposes to exchange an up spin
on siteri1 with a hole on siteri2 . The sites are ordered (i = 1 . . . L) and we need to keep track
of the sign change for the determinant due to the fermionic commutation. Letbn = a(ri2−rn)
wherern are the positions of the down spins. The new matrixãij and its determinant after the
MC step are given by

ãij =

{

bj for i = i2 ,

aij otherwise.

det ãij

det aij

= (−)#(i1,i2)
∑

n

bn[a−1]ni2 .

(2.15)

where#(i1, i2) is the number of particles between sitesi1 andi2. The acceptance probability
of this step is then given by (2.12), simply using the ratio ofthe determinants squared,
(det ãij/ det aij)

2. As already mentioned, it is therefore efficient to store andupdateaij as
well as its inverse matrix[a−1]ij after every accepted MC step. The acceptance probabilities
for exchanging two spins is computed analogously.

The random walk explained in the last paragraph provides a sample of states|α〉 with
probability distributionp(α). The expectation value of an operator can now be computed
approximately,

〈ψ|O|ψ〉
〈ψ|ψ〉 =

∑

α

p(α)
〈α|O|ψ〉
〈α|ψ〉 ≃

∑

{α̃}

〈α̃|O|ψ〉
〈α̃|ψ〉 (2.16)

where{α̃} denotes the generated MC sample. I estimate the error of the expectation value by
its variance over different MC runs.

The generation of an MC sample for a given wavefunction is identical for all operator ex-
pectation values. The average over the MC sample (2.16), however, needs to be implemented
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for each operatorO that we are interested in. This is easiest for operators which are diagonal
in spin space, likeO = ninj orO = Sz

i S
z
j etc. For example,ninj

〈α|ninj|ψ〉
〈α|ψ〉 =

{

1 if ri andrj are occupied in|α〉 ,
0 otherwise.

(2.17)

Hopping operators of the formO = c†iσcjσ are also straightforward to compute since this
is very similar to the MC steps explained in (2.15):

〈α|c†i↑cj↑|ψ〉
〈α|ψ〉 =

{

(−)#(i,j)
∑

n a(rj − rn)[a−1]nj if ri has↑-spin andrj is empty in|α〉 ,
0 otherwise.

(2.18)

where#(i, j) is the number of occupied sites between sitei andj, andrn are the positions of
the↓-spins in|α〉.

In this thesis, I also computeoff-diagonalmatrix elements between a wavefunction pro-
jected to different particle numbers,

〈N−2|ci↑cj↓|N〉 . (2.19)

I am assuming here a wavefunction|ψ〉 where the particle number is fluctuating, and|N〉 =
PN |ψ〉. The main difficulty is to compute the correct normalizationof this expectation value.
It is easier to normalize it to the wavefunction withhigherparticle number,

〈N−2|ci↑cj↓|N〉
〈N |N〉 ≃

∑

{α̃}

〈N−2|ci↑cj↓|α̃〉
〈N |α̃〉 . (2.20)

This matrix element is just the ratio between a determinant with one row and one column
removed, and the determinant. Using again linear algebra, I get

〈N−2|ci↑cj↓|α〉
〈N |α〉 =

{

[a−1]ji if ri has↑-spin andrj has↓-spin in|α〉 ,
0 otherwise.

(2.21)

In order to compute the same expectation value with normalization to the wavefunction with
lower particle number, I need to sample the wavefunction|N−2〉 instead,

〈N |c†j↓c
†
i↑|N−2〉

〈N−2|N−2〉 ≃
∑

{α̃}′

〈N |c†j↓c
†
i↑|α̃〉

〈N−2|α̃〉 . (2.22)

In this case, the matrix element is the ratio between a determinant with one row and one
columnadded, and the determinant. To compute this, I expand the determinant in the numer-
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ator and get

〈N |c†j↓c
†
i↑|α〉

〈N−2|α〉 =

{

∑

n,m a(ri − rn)a(rm − rj)[a
−1]mn if |α〉 has a hole atri andrj

0 otherwise.
(2.23)

The correctly normalized expectation value is then given bythe product of these matrix
elements4

∣

∣

∣

∣

∣

〈N−2|ci↑cj↓|N〉
√

〈N |N〉〈N−2|N−2〉

∣

∣

∣

∣

∣

2

=
〈N−2|ci↑cj↓|N〉

〈N |N〉
〈N |c†j↓c

†
i↑|N−2〉

〈N−2|N−2〉 . (2.24)

Finally, let me note that one can greatly reduce the MC error bars on these expectation
values or reduce the simulation time by taking advantage of lattice symmetries. For example,
using the translational invariance of the wavefunction, I can write〈ninj〉 = 1

L

∑

q〈ni+qnj+q〉
which providesL independent measurements in a single MC walk.

In conclusion, variational Monte Carlo is a numerical methodwhich allows to compute
various static correlations in a given wavefunction withinsmall error bars. In Chapter 3, I will
present and discuss new results that I obtained within the VMC method.

4This expectation value may be used as a superconducting order parameter. I will discuss it in the next chapter
in more detail. As a by-product of this computation, one can obtain the number 〈N |N〉

〈N−2|N−2〉 which is rele-
vant for understanding the particle-number renormalization by the Gutzwiller projector in a grand-canonical
wavefunction [41].
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2.1.3. Gutzwiller approximation

Although VMC provides a scheme to compute static correlations in Gutzwiller-projected RVB
wavefunctions to a high precision, it is still a computationally demanding numerical tool.
Furthermore, VMC is not able to give anydynamicalor temperature dependentinformation.
For this reason, we may resort to an analytical tool for RVB wavefunctions: the Gutzwiller
approximation (GA) [5, 26].

The GA replaces the Gutzwiller projector in the expectationvalues by a renormalization
with a statistical weight factor. Let|ψ0〉 be an unprojected mean-field wavefunction containing
states with doubly occupied sites. Using GA, we write the expectation value of an operatorO
as

〈ψ0|PdOPd|ψ0〉
〈ψ0|Pd|ψ0〉

≃ gO
〈ψ0|O|ψ0〉
〈ψ0|ψ0〉

. (2.25)

The Gutzwiller renormalization factorgO for the operatorO is obtained by comparing the
dimension of the Hilbert space contributing to the processes in the Gutzwiller-projected and
the unprojected wavefunction, respectively.

Consider for example the hopping operatorO = c†i↑cj↑. In the projected Hilbert space, the
probability for such a hopping process is

∼
√

n̄j↑(1 − n̄i)n̄i↑(1 − n̄j) (2.26)

wheren̄i = 〈ψ0|Pd ni Pd|ψ0〉. On the other hand, in the unprojected Hilbert space, the same
probability is

∼
√

n̄0
j↑(1 − n̄0

i↑)n̄
0
i↑(1 − n̄0

j↑) (2.27)

with n̄0
i↑ = 〈ψ0|ni↑|ψ0〉. The Gutzwiller factor is then written as

gt =

√

n̄j↑(1 − n̄i)n̄i↑(1 − n̄j)
√

n̄0
j↑(1 − n̄0

i↑)n̄
0
i↑(1 − n̄0

j↑)
. (2.28)

Considering homogenous and non-magnetic wavefunctions (n̄i↑ = n̄j↓ = n̄
2
; which is the case

for the wavefunctions considered in this thesis) and assuming thatn̄i = n̄0
i , we obtain the

well-known result

gt =
1 − n̄

1 − n̄/2
=

2x

1 + x
. (2.29)

Note thatgt renormalizes all square operators likec†c as well as operators of the formc↑c↓,
like (2.5) or (2.19). The Gutzwiller approximation in a grand-canonical wavefunction with
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fluctuating particle number is more complicated and becomesparticularly problematic in the
half-filled limit where the condition̄n = n̄0 requires careful inspection [5, 41, 42, 43, 44].

The Gutzwiller renormalization factor for the spin-exchange termO = Si · Sj can be
computed in a similar way. ForS+

i S
−
j the probability for processes in the projected space is

∼
√

n̄i↓n̄j↑n̄j↓n̄i↑ (2.30)

and for the unprojected space it is

∼ n̄0
i↓(1 − n̄0

j↑)n̄
0
j↓(1 − n̄0

i↑) . (2.31)

For a wavefunction with spin-rotation symmetry,Sz
i S

z
j has clearly the same renormalization

factor. Under the same assumptions as before, the renormalization factor for the spin-exchange
term is given by

gS =

√
n̄i↓n̄j↑n̄j↓n̄i↑

n̄0
i↓(1 − n̄0

j↓)n̄
0
j↓(1 − n̄0

i↓)
=

1

(1 − n̄/2)2
=

4

(1 + x)2
. (2.32)

The Gutzwiller approximation (or more refined versions of it, see e.g. Refs. [42, 43, 45])
may now be used to compute the same static correlations as VMCis able to compute exactly.
A more advanced application of the Gutzwiller approximation is the so-calledrenormalized
mean-field theory(RMFT) of thet-J model [26] where the Gutzwiller projectors in thet-J
Hamiltonian are directly replaced by Gutzwiller-renormalization factors,

HRMFT = − gtt
∑

〈i,j〉,σ
c†iσcjσ + gSJ

∑

〈i,j〉
[Si · Sj −

ninj

4
] . (2.33)

As one is working in the unprojected Hilbert space now, the model can be treated by conven-
tional means, e.g. by a self-consistent mean-field decoupling (hence the name RMFT).
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2.2. Quantum dimer models

2.2.1. Introduction

The quantum dimer model (QDM) on the triangular lattice is a further approach that I use in
this thesis. The aim of QDMs is to consider low-energy effective models for spin-1

2
antiferro-

magnets. The usual starting point for calculations with Heisenberg systems are the eigenstates
of theSz

i operators. However, as I discussed earlier in this chapter,under certain circumstances
(like geometric frustration or doping) this may not be the best starting point. An alternative
to theSz eigenstates is provided by thevalence bondstates (see Section 2.1), as proposed by
Anderson [12, 46, 47].

After Anderson’s publication on the cuprates in 1987 [12], the research on RVB theory
split into two branches. The first direction was mainly motivated by the observation that a
projectedd-wave superconductor is the most competitive variational state for thet-J model
on the square lattice [27, 28]. Thed-wave superconductor has gapless points in the spec-
trum (nodal points) and the singlet amplitudeak = vk

uk

is not analytic at these nodal points.
The corresponding amplitudea(r) is expected to be long-range and so are various correlation
functions [48, 49]. This line of research is sometimes summarized under the name ofalge-
braic spin liquids. The second branch of research considered RVB wavefunctions which have
exponentially short-range singlet bonds, in particular only nearest-neighbor valence bonds,
a(rnn) = ±1 anda(r)|r|>0 = 0. This second type of RVB wavefunctions can be investigated
with the help of quantum dimer models.

Figure 2.3.: Two examples of short-range (nearest-neighbor) close-packed dimercoverings of a square
lattice.

A short-range valence-bond spin state of the form5 Π(i,j)b
†
ij|0〉 may be defined by pairing

nearest-neighbor sites on a lattice (paired sites = dimers;bold bars in Fig. 2.3). We call such
a configuration aclose-packed covering of a lattice by hardcore dimers. “Close-packed”,
because we do not allow empty sites (= holes or monomers) and “hardcore”, because two
dimers are not allowed to cover the same lattice site. The spin state corresponding to a dimer

5The operatorbij = 1√
2
[ci↓cj↑ − ci↑cj↓] was introduced in Section 2.1.
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coveringc is

|ψc〉 = Π(i,j)∈cb
†
ij|0〉 , (2.34)

where the product is over all pairs of sites(i, j) which are connected by a dimer inc. These
states are normalized,〈ψc|ψc〉 = 1, but not orthogonal in general. The relation between two
dimer coverings can be characterized by theirtransition graph, i.e. their superposition on
the lattice. The transition graph of the dimer coverings in Fig. 2.3 is shown in Fig. 2.4. It is
obvious that the transition graph of two close-packed dimercoverings consists of closed loops.
One can show [50] that the overlap between the correspondingspin states of two close-packed
dimer coveringsc andc′ is related to their transition graph by

〈ψc|ψc′〉 = ±2
∑

u(1−lu) (2.35)

where the sum is over all loopsu in the transition graph andlu is the length (number of sites)
of the loop.

Figure 2.4.: The transition graph for the dimer coverings shown in Fig. 2.3. For close-packed dimers,
the transition graph consists of closed non-intersecting loops on the lattice.

The dimension of the singlet subspace forN spins is N !
(N/2)!(N/2+1)!

≃ 2N asN → ∞ [51].

The number of dimer coverings on a large square lattice withN sites is6 e
G
π

N ≃ (1.339)N [72].
We see that the space of nearest-neighbor valence-bond (VB) states is considerably smaller
than the singlet subspace. Using this valence-bond basis toconstruct a meaningful low-energy
effective Hamiltonian is therefore a strong statement about the spin model (much stronger than
the restriction to the singlet sector). A family of spin models which have valence-bond states
as exact eigenstates were constructed by Klein [52]. However, the Klein models have com-
plicated interactions and seem relatively far from a simpleHeisenberg model on the square or
triangular lattice. One may still hope that frustration introduced by further-neighbor interac-
tions, lattice distortions, or weak hole doping stabilizesVB- or RVB-type states.

A realistic spin model which may possess an RVB ground state is the strongly frustrated
Kagoḿe latticeantiferromagnet [53, 54]. The recent discovery ofHerbertsmithite, a material
believed to be described by an almost perfect Heisenberg antiferromagnet on the Kagoḿe lat-
tice, has renewed the interest in this model [55]. However, from recent variational calculations,

6G = 1−2 − 3−2 + 5−2 − . . . is Catalan’s constant.
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the RVB ground state is believed to be of algebraic type, i.e.with long-range singlets [56].
Note that it is still far from established if the proposed state captures the true nature of the
Kagoḿe Heisenberg system.

Apart from their usefulness to illustrate fundamental theoretical concepts, proposals have
been made to engineer QDMs in mesoscopic devices with the help of Josephson junc-
tions. An interesting application of such devices would be fault-tolerant q-bits in quantum
computing [57].

2.2.2. Topological degeneracy and topological order

A reason for the interest in quantum dimer models is their capacity to illustrate the relatively
novel concept oftopological order. Traditionally, the different phases of matter are charac-
terized in terms of local order parameters. This viewpoint,pioneered by Landau, has been
extremely successful in many branches of physics (e.g. condensed matter, statistical physics,
elementary particles, etc.) and forms the basis of the theory of critical phenomena [58].
However, there are examples of phases which cannot by characterized by a local order pa-
rameter. The states which appear in the fractional quantum Hall system are such examples.
These phases are generally liquid states with gapped excitations. In the absence of a local
order parameter, the phase may be characterized bytopological orderas it was suggested by
Wen [59, 60]. Apart from the fractional quantum Hall system,no topological phase has been
experimentally realized and unambiguously identified in solid state physics. Quantum dimer
models are reasonably close to realistic spin systems, yet relatively simple to solve and, most
importantly, topological order can rigourously be shown toexist in some cases. QDMs are
therefore highly interestingtoy modelsto study these topological phases in a wider context of
solid state physics.

One characteristic of a topologically ordered phase is thatthe ground state degeneracy
depends on the genus of the underlying space on which the model is defined (the model on
e.g. a sphere, torus, cylinder, etc. has a different number of degenerate ground states) [61,
62]. To have topological order, one requires furthermore that (i) the degenerate ground states
are all orthogonal and (ii) the ground-state expectation value of any local order parameter is
identical in each topological sector (i.e. not only the Hamiltonian, but no local order at all can
distinguish between the degenerate ground states) [48, 63].
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2.2.3. The square-lattice Rokhsar-Kivelson quantum dimer model

The quantum dimer model (QDM) was first formulated by Rokhsar and Kivelson (RK) in their
seminal work of 1988 [64]. In this model, the Hilbert space isspanned by dimer coverings
which are defined to be orthogonal. Such orthogonal states may formally be constructed for
spin models, but here I leave out these details and instead refer to the original work. Letc
denote a (classical) dimer covering. The corresponding vector |c〉 satisfies

〈c|c′〉 = δcc′ . (2.36)

The Hamiltonian in this Hilbert space is defined as

HRK =
∑

plaquettes

−J [| 〉〈 | + | 〉〈 |] + v[| 〉〈 | + | 〉〈 |] . (2.37)

The operator

| 〉〈 | + | 〉〈 | , (2.38)

acting on a plaquette (elementary square) of the lattice, returns zero if the plaquette has no
parallel dimers; if the plaquette has parallel dimers, thenthey are rotated by 90 degrees (it
“flips” the plaquette). The operator

| 〉〈 | + | 〉〈 | (2.39)

returns zero if there are no parallel dimers on the plaquette, and it acts as identity on pla-
quettes with parallel dimers (the plaquette is “flippable”). As a result, the operator in (2.37)
proportional tov counts the number of flippable plaquettes.

The physical motivation behind the model (2.37) in the framework of Anderson’s RVB
construction is the following [64, 65]: a dimer represents two electrons in a real-space Cooper
pair. These “pre-formed” pairs may or may not condense. In the close-packed limit, when all
sites are occupied by a dimer, the system is insulating. If the dimers are in a liquid phase, it is
expected to capture the pseodogap phase of the cuprates. Thealternative possibility is that the
dimers order and form a crystal. When the density of dimers is reduced and unpaired sites are
introduces, then the system becomes conducting. It may evenbecome superconducting if the
pairs condense.

At the RK point in parameter space, defined byJ = v > 0, the ground state of (2.37)
is known exactly. It is the prototype of a short-range RVB (sRVB) wavefunction: the equal-
weight superposition of all dimer coverings

|sRVB〉 =
1√
N0

∑

c

|c〉 (2.40)
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whereN0 is the total number of coverings. A formal proof may be given by noting that the
RK Hamiltonian (2.37) can be written as a sum of (non-commuting) projection operators,

HRK,J=v = J
√

2
∑

plaquettes

P� (2.41)

where

P� =
1√
2
[| 〉 − | 〉][〈 | − 〈 |] (2.42)

projects to the subspace with parallel dimers on the plaquette superposed with a phase shiftπ.
The eigenvalues of a sum of projectors are clearly non-negative. Applied to the state|sRVB〉,
these projectors all give zero which establishes that|sRVB〉 is a ground state ofHRK,J=v. There
are ground state degeneracies, but I defer their discussionto the triangular-lattice quantum
dimer model.

There is a lot more to say about the square-lattice quantum dimer model. I will restrict
here to some key results only. While very little is known aboutfinite-temperature properties,
we have a relatively complete picture of the zero-temperature J-v phase diagram. In the
limit v

J
→ −∞, the ground state is a maximally flippable state, the so-calledcolumnarstate

(Fig. 2.5a). In the other limit,v
J
→ +∞, the ground state has the minimal number of flippable

plaquettes, the so-calledstaggeredstate (Fig. 2.5c). The ground states for intermediate

a) c)b)

Figure 2.5.: a) Columnar dimer state [v → −∞], b) plaquette phase [0.6J . v < J ], and c) staggered
dimer state [v > J ].

values ofv
J

are only known for finite lattices from quantum and Green’s function Monte Carlo
simulations, exact diagonalization studies [66, 67, 68], and mapping to field theories close to
the RK point [69, 70, 71]. These studies suggest an intermediate plaquette phasefor 0.6 .
v
J
< 1 where parallel dimers resonate on one out of four plaquettes(Fig. 2.5b).
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2.2.4. Static and dynamical correlation functions at Rokhsar-Kivelson
points

The very special form of the ground state at the RK point as an equal-weight superposition of
all dimer coverings facilitates the computation of certainzero-temperature correlation func-
tions. For example, the static correlations for an operatorwhich is diagonal in the dimer basis
is

〈sRV B|O|sRV B〉 =
1

N0

∑

c,c′

〈c|O|c′〉 =
1

N0

∑

c

Oc . (2.43)

This is simply a correlation function in the classical statistical mechanics of dimer coverings
where all coverings have identical weight.

The classical dimer problem on the square lattice has been solved exactly [72, 73], e.g.
the dimer-dimer correlation functions are known. For the square lattice, the dimer correla-
tion functions decay algebraically at large distance. Thisgives further support to the idea
that the RK point is a quantum critical point between two ordered phases [74]. On field-
theoretic grounds, one expects to find gapless excitations in such a phase. This expectation
can be proven to be exact [64, 75]. These results are, however, disappointing from the point
of view of a topological RVB liquid. Despite its liquid character and short valence bonds, the
square lattice QDM does not provide an example of such a topological phase, at least in its
simplest form. For this reason, the search for topological phases concentrated on QDMs on
non-bipartite lattices, in particular on the triangular lattice which I will consider next.

Due to the special form of the Hamiltonian (2.37) at the RK point as a sum of projectors,
the dynamical correlation functions in imaginary time can be mapped to correlation functions
in a classical stochastic process. These correlation functions can then be computed efficiently
with classical Monte Carlo algorithms [69, 76, 77, 78, 93].
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2.2.5. The triangular-lattice Rokhsar-Kivelson quantum dimer model
and topological sectors

Figure 2.6.: A typical dimer covering of the triangular lattice.

Figure 2.7.: Crystalline phases on the triangular lattice. Left: columnar state with maximal number of
flippable plaquettes forvJ → −∞. Right: staggered state with no flippable plaquettes for
v
J → +∞.

Analogously to the square-lattice QDM, the model can be defined on the triangular (or any
other) lattice. A typical dimer covering on the triangular lattice is given in Fig. 2.6. Again,
we define a minimal quantum Hamiltonian on the space spanned by the dimer coverings,
Eq. (2.44). The first term in the Hamiltonian flips parallel dimers on each plaquette of the
lattice, the second one counts the plaquettes with paralleldimers. The plaquettes on this
lattice are three types of rhombi: right-, up-, and left-pointing.

HRK =
∑

, ,

−J [| 〉〈 | + | 〉〈 |] + v[| 〉〈 | + | 〉〈 |] . (2.44)

Similar to the square lattice, one can prove that the ground state at the RK point (J = v)
is given by the analog sRVB wavefunction (2.40). The ground state for v

J
→ −∞ and

v
J
→ +∞ are again crystalline phases, columnar in the first limit andstaggered in the second

(Fig. 2.7). An intermediate ordered phase with large unit cell (christened “
√

12×
√

12-phase”
by Moessner and Sondhi) was found numerically in the vicinity of v ≃ 0 [79, 80].
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Figure 2.8.: A dimer covering on a4 × 4 lattice with periodic boundary conditions in both directions.
The simple closed pathΓ winds once around the torus and defines the operatorνΓ =
(−1)# of dimers intersectingΓ.

Let us briefly discuss an important symmetry of this model. Consider a particular dimer
covering on, say, a torus (periodic boundary conditions in both space directions). Let us draw
a simple closed pathΓ which winds once around the torus and which does not cross lattice
sites (Fig. 2.8). Consider the number of dimersNΓ that intersect the pathΓ. The operator

νΓ = (−1)NΓ (2.45)

commutes with the Hamiltonian (2.44) and represents therefore a conserved quantity. This
is easy to understand since a flipping process of the Hamiltonian can change the number of
dimers intersectingΓ in Fig. 2.8 by two only.

Are there as many independent conserved quantitiesνΓ as there are closed pathsΓ? The
answer is of course no. Once a closed pathΓ is chosen, it is easy to see that deforming it
continuously (i.e. by gluing closed paths which are topologically trivial) only changes the sign
of the operatorνΓ:

νΓ+Γ′ = (−1)# of sites enclosed byΓ′

νΓ . (2.46)

As a result, we see that there are as many independent conserved quantitiesν as there are
nontrivial closed paths for the topological space on which the dimer model is defined. In the
case of a torus, there are two such paths. On a sphere there arenone, on a cylinder one, etc.
The eigenspaces of the operatorνΓ are calledtopological sectors. The triangular-lattice QDM
on a torus has four topological sectors.

The presence of topological sectors gives us important information about the ground state
degeneracy at the RK point. For the triangular QDM on the torus, the sRVB ground-state
wavefunction (2.40) can be replaced by four orthogonal and degenerate ground states,

|sRVB, i〉 =
1

√

N0
i

∑

c∈Vi

|c〉 , (2.47)

where the sum goes only over the basis vectors spanning the topological sectori. This
degeneracy is one property of a topologically ordered phase. However, it is not a sufficient



34
Resonating-valence-bonds: a variational view on high-temperature

superconductivity

condition, one also has to show that all other correlations are independent of the sector. At
the RK point, analytical methods are available to compute thecorrelation functions of the
triangular-lattice QDM and topological order has been proven to exist [63, 79]. Furthermore,
a finite correlation length for dimer-dimer correlations has been found, which fits well into the
phenomenology of a topological liquid. Efficient Monte Carlomethods can be used to study
excitations and a gapped spectrum was found [76, 77]. More involved numerical techniques
have shown that the ground state is in a topological phase forsome extended parameter range
0.8 . v

J
≤ 1. For v

J
> 1, the staggered phase immediately sets in [80].

2.2.6. Topological excitations in the dimer liquid

In the last section, I have shown that the ground state in the topological phase of the triangular-
lattice QDM is relatively well known. At this point, the natural question arises about the
excitations in this state. The exact low-lying eigenstatesare not known, but can we understand
them at least variationally? Read and Chakraborty [81] and RK [65, 82] have argued that the
gapped excitation of such a liquid must be atopological defect, i.e. a twist in the phase of
the ground state wavefunction.7 Indeed, this nicely fits in with the field-theoretic scenarioof
electron fractionalization in the pseudogap phase of the cuprates by Senthil and Fisher [85].
In the Senthil-Fisher proposal, the physical electron splits into a spin-1

2
and a spinless charge

degree of freedom (the spinon and the holon) which interact via a discrete Z2 gauge field. This
is the analog to one-dimensional models where spin-charge separation is known to occur [24].
Consider now the topological dimer liquid as an effective model for such a Z2 lattice gauge
theory in two dimensions (in itsdeconfined phasewhere the fractionalization actually takes
place [74, 86]). In the dimer model, the spinon mass is assumed to be infinite because this
excitation would break a dimer. Apart from the holon excitation, which may be mimicked by
introducingmonomersinto the dimer model, there is only the gauge degree of freedom left.
The massive excitation in a pure gauge theory without matterfields is a vortex. The vortex in
the Z2 gauge theory is the analog to the topological defect in the QDM. This Z2-vortex was
baptizedvisonby Senthil-Fisher. I will use the same terminology for the dimer analog.

The vison in the QDM is constructed in the following way [63, 76, 81]. Consider the
pathΓ that we used to construct the topological sectors, but now terminate it on a plaquette
(Fig. 2.9). Of course, on a compact surface there is always a second end of the path. This open
path is the precise analog to the string used by Dirac to construct the magnetic monopole [87].
For a single monopole, the Dirac string has to go to infinity (or to terminate at the boundary,
for a finite system). On a compact space, monopoles can only exist in pairs.

7It is interesting to keep in mind a historical motivation forthe topological excitation: Read and Chakraborty
constructed this excitation for the short-range RVB state on a square lattice. Marshall’s sign rule [83] for the
ground state of a bipartite Heisenberg model [46, 84] in the presence of a single hole naturally calls for such
a phase twist in the wavefunction.
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Figure 2.9.: The vison-stringΓx defines the vison operatorVx = (−1)# dimers intersectingΓx . The opera-
tor Vx lives on the dual lattice (plaquettes).

The vison operator is defined as

Vx = (−1)# dimers intersectingΓx (2.48)

whereΓx is an open path starting at plaquettex and going to a reference plaquette. The
location of the reference plaquette depends on the boundarycondition of the system (it is at
the boundary for a finite system, at infinity for the infinite system, or some arbitrary plaquette
for a compact system). The corresponding two-vison operator,

VΓ(x,y)
= VxVy , (2.49)

does not depend on the boundary conditions. Furthermore, itis again obvious that a continuous
deformation of the pathΓ(x,y), keeping the endpointsx andy fixed, only changes the sign of
the operator by the parity of the number of sites crossed,

VΓ′
(x,y)

= (−1)# of sites betweenΓ andΓ′

VΓ(x,y)
. (2.50)

It is clear that there is an arbitrariness in the sign of the vison operator for each position on
the dual latticex. This arbitrariness can be removed by choosing a reference dimer covering
and multiplying the vison operator in definition (2.48) by the corresponding value in the ref-
erence state [76]. In this way, the vison operatorVx is displaying the parity of the number of
loops in the overlap graph between the dimer covering and thereference covering that wrap
aroundx. The choice of a reference covering may be calledfixing a Z2 gauge, in analogy with
the corresponding lattice gauge theory.

The vison operator creates a state which has the physical properties we expect from a
vortex. Suppose we break a dimer located far away from the vison into two spinons. Then
we move one of the spinons in a large circle around the vison byrearranging the dimers with
local moves. After the rearrangement, we pair up the two spinons again into a dimer. During
this process, a new loop in the overlap graph between the states before and after the move is
created and the wavefunction acquires a sign. For a system containing many visons, the sign
only changes if there is an odd number of visons inside the circle.
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The state created by applying the vison operator to the ground state,

|vison, x〉 = Vx|sRVB〉 , (2.51)

is not a true eigenstate of the RK Hamiltonian. However, it is orthogonal to the ground state
and has the desired properties of a vortex. To obtain an exactexcitation, the variational
state (2.51) should be modified in the vicinity of the vison center x. However, the global
properties of this wavefunction are correct. An important point is that such avisonlikeexci-
tation cannot be deformed to a local (non-visonlike) excitation by any local rearrangement of
dimers. The energy of both types of excitations (non-visonlike and visonlike) can be probed
at the RK point by computing the appropriate dynamical correlation functions with classical
Monte Carlo [69]. It was found by Ivanov that the gap to visonlike excitations is smaller than
the one to non-visonlike excitations [76]. The obtained vison gap is∼ 0.1v, in accordance
with earlier predictions [57], and it was recently confirmedin Ref. [77].

2.2.7. Doping quantum dimer models

In the context of the RVB construction, it is very interesting to consider the other degrees of
freedom of the Z2 gauge theory: the spinon and the holon. Is the original intuition of RK
correct and do additional holons lead to a condensed superconducting state?

There has recently been renewed interest in quantum dimer-monomer models [88, 89,
90, 91, 92, 93]. Let me just note that two test-monomers are found to be confined in the
square-lattice model. However, they are indeed found to be deconfined in the liquid phase of
the triangular-lattice QDM [88, 79]. Introducing dynamical holes with the simplest hopping
process generically leads to phase separation between crystalline and liquid regions. Inter-
estingly, a uniform superfluid phase was found on the triangular lattice in some region of the
RVB phase,v . J [92].

The topological sectors for a quantum dimer model can still be defined in the presence
of static holes. The operatorνΓ, Eq. (2.45), can be defined as before, but the effect of a
continuous deformation of the pathΓ needs to be adapted. As a consequence, topological
defects are present in the system. Energetic considerations for the corresponding spin models
suggest that static holes may form bound states with a vortexin some cases [81, 84].

Vortex excitations in the presence of mobile holes pose technical difficulties. As soon as
the hole is mobile, the topological sectors get mixed by the dynamics andνΓ is not conserved
anymore. As a consequence, it is difficult to define topological defects in such a situation.
However, progress can be made in the case of a small hopping amplitude of the hole. The
dispersion of a slow hole is strongly affected by the presence of a bound vortex [93], as I will
show in Chapter 4.



Chapter 3.

Strongly correlated superconductors and
their electronic properties

3.1. Introduction

In Chapter 2, I have introduced several techniques which can be used to attack the difficult
problem of doped Mott insulators. In this chapter, I analyzethe problem in the context of
the experimental probe of angle-resolved photoemission spectroscopy (ARPES). I apply and
extend these theoretical techniques, in order to make progress in the understanding of the
spectral properties in the framework Anderson’s RVB approach to doped Mott insulators.

The studies starting from Anderson’s wavefunctions are intrinsically variational. It may
therefore seem difficult to make statements about spectral properties (i.e. about excitations) in
such a variational framework. However, in this thesis I am mainly interested in the properties
of low-lying excitations. At low temperature, the experimentally accessible properties are
dominated by such excitations. If translation in space is a symmetry of the Hamiltonian, we
may construct variational wavefunctions with a given momentum and minimize its energy.
The result is a genuine low-lying variational excitation (as long as it is orthogonal to the
variational ground state).

3.1.1. Key experimental technique: angle-resolved photoemission
spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique which has
been developed to a high perfection during the last 20 years [29, 30]. In the early years of
ARPES, not all experimental results were reproducible. However, the intense effort of the
community has improved methods and sample quality to an impressive degree. The popu-
larity of this technique, which is now used by many research groups around the world, is
due to its ability to provide momentum-resolved information about the electronic excitations
in the solid. Furthermore, ARPES is particularly appropriate to study layered, quasi-two-
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dimensional structures which explains the large interest in this technique after the discovery
of HTSC.

Figure 3.1.: The principle of angle-resolved photoemission spectroscopy: An incident photon with
energy~ν knocks out a valence electron from the surface of the sample. The detected in-
tensity of ejected electrons is proportional to the single-particle spectral function. Picture
taken from [30].

Under certain assumptions (mainly the so-calledsudden approximationin thestep models,
see [29, 30] for details), the intensity of ejected electrons measured in photoemission experi-
ments (see Fig. 3.1) is given by

I(k, ω) = I0(k, ν)f(ω)Aβ(k, ω) (3.1)

wherek is the two-dimensional momentum of the electron parallel tothe sample surface.ω is
the energy of the electron with respect to the Fermi energy.I0 is a kinematic factor which
depends on the momentum of the electron, but also on the polarization and frequency of the
incident photon. There are experimental methods to remove this factor (normalization to the
spectra in a different phase, explicit calculation, selection rules, etc.) which I will not discuss
here. The function

f(ω) =
1

1 + eβω
(3.2)

is the Fermi-Dirac distribution. At zero temperature (T = β−1 → 0), photoemission only
probes the occupied states withω < 0. Aβ(k, ω) is the single-particle spectral function,
defined as the imaginary part of the retarded Green’s function. At zero temperature, it is given
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by [29, 30, 95, 96, 97]

A(k, ω) = − 1

π
ImG(k, ω + i0+)

= − 1

π
Im

[

〈ψN
0 |ck

1

ω − [H − EN
0 ] + i0+

c†
k
|ψN

0 〉 + 〈ψN
0 |c†

k

1

ω + [H − EN
0 ] + i0+

ck|ψN
0 〉
]

=
∑

n

|〈ψN+1
n |c†

k
|ψN

0 〉|2 δ(ǫn − ω) +
∑

m

|〈ψN−1
m |ck|ψN

0 〉|2 δ(ǫm + ω) . (3.3)

|ψN
0 〉 is the normalizedN -particle ground state of the system with energyEN

0 . The last line
of (3.3) is the so-calledspectral representation, |ψN±1

n 〉 are the eigenstates withN±1 particles,
respectively, andǫn are the excitation energies. Note that the spin indexσ is omitted in ex-
pression (3.3). ARPES measurements are not sensitive to the electron spin and I will omit it
whenever an expression is valid for both spin orientations.

ARPES measurements must be done at low temperature [5]. The main drawback of (direct)
ARPES is its insensitivity to the spectral function at positive energyω, because of the strong
cutoff from the Fermi-Dirac distribution in (3.1). The energy-symmetrization of ARPES spec-
tra is a widely applied procedure to fix this issue [29]. Underthe assumption that the spectral
function is symmetric inω, one may write

Isym(k, ω) = I(k, ω) + I(k,−ω) = I0(k, ν)Aβ(k, ω) . (3.4)

However, the symmetry in energy of the ARPES spectral function is controversial.

An alternative to thedirect ARPES discussed here (photon in, electron out) is theinverse
photoemission spectroscopy [30]. In inverse ARPES, electron bombardment of the sample
produces emission of light which is then detected (electronin, photon out). The inverse
method probes the occupied electron states in the solid and provides information about the
spectral function at positive energy. However, inverse spectroscopy has very poor resolution
at present and the angle-resolved information is of little use.



40 Strongly correlated superconductors and their electronic properties

3.2. Analysis of the spectra within the
resonating-valence-bond picture and thet-J model

In the following, I am interested in the spectral propertiesof a strongly interacting system
as described, e.g., by thet-J model. I suppose that the onsite repulsionU is very large and
consider only the lower Hubbard band where the double occupancy is projected out. The
energy range in the projected subspace is restricted to|ω| . ΩU whereΩU ∼ U is a large
cutoff scale. In the case of the cuprates, this cutoff isΩU ≃ 1eV [98].

3.2.1. Spectral sum rules in thet-J model

In the subspace with less than 2 electrons per site, we may work with Gutzwiller-projected
electron operators,

c̃iσ = ciσ[1 − niσ̄] , (3.5)

and their Fourier transform,

c̃kσ =
1√
L

∑

i

c̃iσe
−ik·xi . (3.6)

The (anti-)commutation relations are

{c̃iσ, c̃†jσ} = δij [1 − niσ̄] , (3.7a)

{c̃iσ, c̃†jσ̄} = δij c
†
iσ̄ciσ , (3.7b)

{c̃iσ, c̃jσ} = 0 . (3.7c)

The spectral function (3.3) in the lower Hubbard band is given by

Ã(k, ω) = − 1

π
ImG̃(k, ω + i0+)

=
∑

n

|〈ψ̃N+1
n |c̃†

k
|ψ̃N

0 〉|2 δ(ǫ̃n − ω) +
∑

m

|〈ψ̃N−1
m |c̃k|ψ̃N

0 〉|2 δ(ǫ̃m + ω) (3.8)

where the eigenstates and energies are now restricted to theGutzwiller-projected subspace.
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The total (single-particle) spectral weights are defined as

Z tot−
k

=

∫ 0

−∞
Ã(k, ω)dω =

∑

m

|〈ψ̃N−1
m |c̃k|ψ̃N

0 〉|2 , (3.9a)

Z tot+
k

=

∫ ∞

0

Ã(k, ω)dω =
∑

n

|〈ψ̃N+1
n |c̃†

k
|ψ̃N

0 〉|2, (3.9b)

Z tot
k

= Z tot+
k

+ Z tot−
k

=

∫ ∞

−∞
Ã(k, ω)dω . (3.9c)

I will call Z tot+ the spectral weight on the particle side, orparticle spectral weight, Z tot− the
spectral weight on the hole side, orhole spectral weight, andZ tot thetotal spectral weight. It is
clear from the form ofA(k, ω) that the spectral weights satisfy0 ≤ Z tot± ≤ 1. The following
sum rules1 are straight-forward to find by completeness of the basis|ψ̃n〉,

Z tot−
k

= 〈ψ̃N
0 |c̃†

k
c̃k|ψ̃N

0 〉 = ñk , (3.10a)

Z tot+
k

= 〈ψ̃N
0 |c̃kc̃†k|ψ̃N

0 〉 =
1 + x

2
− ñk , (3.10b)

and

Z tot
k

= 〈ψ̃N
0 |{c̃k, c̃†k}|ψ̃N

0 〉 =
1 + x

2
, (3.11)

wherex = 1−N
L

is the hole doping. The last Eq. (3.11) follows directly fromthe commutation
relation for projected fermions, Eq. (3.7a). Note that the total spectral weight forunprojected
fermions is clearly equal to one. The deficiency from unity inthe sum rule (3.11) is due to
the Gutzwiller projection and the missing weight [(1 − x)/2] is in the upper Hubbard band,
|ω| & ΩU . The effect of the projection is strongest in the limit of half filling, x → 0. At large
doping (x → 1), the commutation relations (3.7) tend to a conventional form and the entire
spectral weight remains at low energy.

Further statements can be made if we integrate expressions (3.10) overk,

1

L

∑

k

Z tot−
k

=
1 − x

2
, (3.12a)

1

L

∑

k

Z tot+
k

= x . (3.12b)

We arrive at the known result [44, 98] that at half filling, thetotal spectral weight is entirely
on the hole side and given by a constant2 equal to1

2
. This asymmetry near half filling is a

1The corresponding finite-temperature expressions for Eqs.(3.10) are
∫∞
−∞ f(ω)Ãβ(k, ω) = 〈c̃†

k
c̃k〉β and

∫∞
−∞[1 − f(ω)]Ãβ(k, ω) = 〈c̃kc̃

†
k
〉β , see [29, 30]. Relation (3.11) is equally valid at finite temperature.

2Note thatZ tot−
k

= ñk = 1

2
andZ tot+

k
= 0 for all k asx → 0.
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sign of the closeness to a Mott insulator and explains, for example, theoverall asymmetry
observed in the tunneling spectra between negative and positive bias voltage [44, 98]. Note
that this (rigorous) asymmetry has nothing to do with the presence or absence of symmetry
in the position of the coherence peaks or in their intensity.The question how this spectral
weight of a doped Mott insulator is distributed amongcoherent quasiparticlesandincoherent
backgroundis still open. I will discuss and comment on these issues in the remaining part of
this chapter.

3.2.2. The Gutzwiller-projected BCS state and its excitations

In this section, I specialize to a particular variational ansatz for the low-lying states of the
t-J model: the BCS wavefunction. As explained in Chapter 2, soon after the discovery of
high-temperature superconductivity, a ground state of theform of a Gutzwiller-projected BCS
wavefunction was suggested because of the natural way it canexplain the emergence of super-
conductivity from a Mott insulator when doping is increased[12].

The BCS Hamiltonian [25] is given by

HBCS = −t
∑

kσ

ξkc
†
kσckσ +

∑

kσ

∆kckσc−kσ̄ + h.c. (3.13)

Its spectrum is described by the Bogoljubov quasiparticle operators,

γkσ = ukckσ − σvkc
†
−kσ̄ (3.14)

where

u2
k

=
1

2
[1 +

ξk
√

ξ2
k

+ ∆2
k

] = 1 − v2
k
. (3.15)

The ground-state wavefunction of the BCS Hamiltonian is

|BCS〉 = Πk

γ−kσ̄γkσ

vk

|0〉 = Πk[uk + vkc
†
k↑c

†
−k↓]|0〉 , (3.16)

where|0〉 is the vacuum for the electron operators.

I construct now a simple variational wavefunction for thet-J model by Gutzwiller-
projecting the BCS ground state and also projecting it to a fixednumber of particlesN ,

|N〉 ∝ PNPd|BCS〉 . (3.17)

The state (3.17) was found to have very low variational energy when ad-wave BCS wave-
function of the formξk = −2t[cos kx + cos ky] − µ, ∆k = ∆[cos kx − cos ky] is chosen, and
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µ/t and∆/t are used as variational parameters [27, 28, 34]. However, inthis section I will
discuss the BCS wavefunctions without specializing to thed-wave case.

Gutzwiller-projected quasiparticle excitations of the form

|kσ,N〉 ∝ PNPdγ
†
kσ|BCS〉 (3.18)

have been discussed in the literature at least since the early work of Zhanget al. [26]. They
enjoy renewed attention in this century after the work of Paramekantiet al. [6, 33, 97, 98, 99,
100, 101, 102]. Let me first discuss some general properties of these excitations.

General properties of Gutzwiller-projected BCS quasiparticles

Note that there are several natural candidates for single-particle spin-1
2

excitations. Before
Gutzwiller projection, we have

γ†
kσ|BCS〉 ∝ c†

kσ|BCS〉 ∝ c−kσ̄|BCS〉 . (3.19)

Clearly, these wavefunctions are also proportional after Gutzwiller projection. More quasi-
particles can be constructed by applying the operators after the projection. However, it turns
out that the only non-proportional excitation is

ckσPd|BCS〉 . (3.20)

These two excitations,Pdc|BCS〉 and cPd|BCS〉, are linearly independent candidates for
spin-1

2
excitations, orthogonal to the ground statePd|BCS〉. In this thesis, I am exploring

the first type of excitation,Pdc|BCS〉. The second excitation was considered in detail in a
recent publication by Tanet al. [103].

Consider the normalized ground-state wavefunction

|N〉 ∝ PNPd|BCS〉 (3.21)

and suppose that the (normalized) coherent one-particle excitations have the form

|kσ,N ± 1〉 ∝ PN±1Pdc
†
±kσ|BCS〉 . (3.22)

In this case, the zero-temperature spectral function (3.8)is

A(k, ω) = |〈N + 1,kσ|c†
kσ|N〉|2δ(ǫ+

k
− ω) + |〈N − 1,kσ|ckσ|N〉|2δ(ǫ−

k
+ ω) + Ainc

k
(ω)
(3.23)
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whereǫ±
k

are the variational energies of the excitations,3

ǫ±
k

= 〈N ± 1,kσ|H|kσ,N ± 1〉 − 〈N |H|N〉 (3.24)

andAinc
k

is the incoherent partof the spectral function.4 The prefactors in (3.23) are the
spectral weightsof the quasiparticle (3.22) or thecoherent spectral weights,

Z+
k

= |〈N + 1,kσ|c†
kσ|N〉|2 , (3.25a)

Z−
k

= |〈N − 1,kσ|ckσ|N〉|2 . (3.25b)

The coherent spectral weights can be brought to a simpler form. For clarity, I will drop
the particle-number projector and the spin indices in the following. Using the simple rela-
tion PdcPd = cPd, the particle spectral weight can be written asZ+ = |〈PcPc†〉|2

〈P 〉〈cPc†〉 = 〈cPc†〉
〈P 〉 .

Commuting the projected operators by using (3.7a), one finds5

Z+
k

=
1 + x

2
− 〈N |c†

kσckσ|N〉 . (3.26)

Comparing (3.26) with the general result, Eq. (3.10b), we seethat this excitation has a spectral
weight which isentirely coherent on the particle side, i.e.

Ainc
k

(ω) = 0 for ω > 0 . (3.27)

As a corollary, it is clear thatZ+
k

= Z tot+
k

∝ x whenx → 0. Furthermore, I can derive the
following exact relation for the hole spectral weight. Using an alternative representation for
the excitation [see (3.19)], one may writeZ− = |〈cPcP 〉|2

〈P 〉〈cPc†〉 = |〈PccP 〉|2
〈P 〉〈cPc†〉 = 〈PccP 〉|2

|〈P 〉|2Z+ and therefore
we have proven that

Z+
−k
Z−

k
= |〈kσ,N − 1|c−kσ̄ckσ|kσ,N + 1〉|2 . (3.28)

Interestingly, this relation also holds for the unprojected BCS state (whereZ+
k

= |uk|2 and
Z−

k
= |vk|2).

The right-hand side of (3.28) can be used as a superconducting order parameter for a finite
system [104, 27]. This is a natural choice, since the off-diagonal long-range order which
defines the superconducting coherence of a state [33], namely

ΦSC
ij = lim

r→∞
〈ciσcjσ̄c†i+rσc

†
j+rσ̄〉 , (3.29)

3I have omitted here a possiblewidth Γ±
k

of the quasiparticle. This omission is not relevant for the following
discussion.

4This terminology implies that we think ofAinc
k

as a smooth function ofω without singularities. The corre-
spondingincoherent spectral weightsare defined asZ inc± = ±

∫ ±∞
0

Ainc(ω)dω = Z tot± − Z±.
5Relation (3.26) was published recently by S. Yunoki [97].
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implies finiteness of the matrix element〈cc〉.6

It is clear from the general sum-rule in a Gutzwiller-projected Hilbert space [Eqs. (3.10)
and (3.11)] that the coherent spectral weight of the quasiparticle is bounded,

Z−
k
≤ Z tot−

k
= nk , (3.30a)

Zk = Z−
k

+ Z+
k
≤ Z tot

k
=

1 + x

2
. (3.30b)

We have also explicitly proven these inequalities for this excitation in the publication [102].
In fact, it was recently shown by Tanet al. [103] that the basis for elementary excitations in
the projected Hilbert space is complete when the second excitation, c|N〉, is included. That
is, the total hole spectral weight of these two excitations sum up tonk. The new excitation
constructed by these authors for ad-wave superconductor produces a strong coherence peak
at high energy (ω ≃ −3t ≃ −1eV). On physical grounds, however, such an excitation is
questionable. A further coherent excitation which takes upthe entire intensity seems to be
inconsistent with ARPES experiments, where a part of the low-energy spectral intensity is
incoherent, especially in the antinodal region (see, e.g.,Ref. [121]).

Gutzwiller approximation for the quasiparticle spectral weights

Before proceeding with the numerical evaluation of the spectral weights, it is interesting to
consider their values in the Gutzwiller approximation (GA;see Section 2.1.3). A careful
derivation of the simplest GA for electronic excitations instrongly correlated superconductors
was recently published by Edeggeret al. [41] and Fukushimaet al. [42], including also
Hubbard-model corrections in [101]. I will give here very heuristic arguments for thet-J
model, which are nevertheless in complete agreement with the mentioned calculations.

The particle spectral weights can be brought to the form of hopping matrix elements. As
already discussed,Z+ = 〈cPc†〉

〈P 〉 . This is exactly the hole-hopping term which is renormalized

by gt = 2x
1+x

in the renormalized mean-field theory [26]. Similarly, one can show that

Z− = |〈c†cP 〉|2
〈c†Pc〉〈P 〉 . According to the general principles of the Gutzwiller approximation [6],

we expect that all these matrix elements are renormalized bythe factorgt with respect to the
same expectation values without Gutzwiller-projector. Itfollows that

Z+
k

≃ gt[1 − n0
k
] = gtu

2
k
, (3.31a)

Z−
k

≃ gtn
0
k

= gtv
2
k
, (3.31b)

wheren0
k

= 〈c†
k
ck〉 is the momentum distribution in the unprojected wavefunction. Accord-

ingly, the off-diagonal matrix elements [right-hand side of (3.28) or (3.29)] are renormalized

6The inverse statement is not true in general. In Section 3.3,I will show that it holds in the special case of a
d-wave superconductor.
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by the same factor,7

〈Pdc−kσ̄ckσPd〉
〈Pd〉

≃ gt〈c−kσ̄ckσ〉 = gtσ ukvk . (3.32)

Let me discuss these Gutzwiller-approximate results near half filling. The GA suggests
thatZ+ ∝ Z− ∝ 〈PccP 〉 ∝ x asx → 0. Note that these results are perfectly consistent
with the two exact relations, (3.26) and (3.28). Furthermore, the total coherent spectral weight
within GA is a constant equal togt. This is consistent with the exact sum rule (3.11), i.e.
Zk = Z+

k
+ Z−

k
≃ gt[u

2
k

+ v2
k
] = 2x

1+x
≤ Z tot

k
= 1+x

2
.

Z+ ∝ x is expected, since the total particle spectral weightZ tot+ is known to vanish with
this power near half filling [see (3.12b)]. However, the GA resultZ− ∝ x is not evident on
general grounds, since the total hole spectral weightZ tot− is finite at half filling. In Section 3.3,
I will discuss the numerical results for the coherent spectral weights which I obtained by the
variational Monte Carlo method. Although my results indicate a decrease with doping of the
hole spectral weight, the decrease seems to be less strong than what is suggested by the GA.
Such a particle-hole asymmetry near half filling was confirmed in recent publications [105,
106]. Note that it has recently been claimed by Fukushima in [43] that he can reproduce this
particle-hole asymmetry within a variant of the GA in the grand-canonical ensemble.

As I discussed in Chapter 2, the property〈PccP 〉 ∝ xα with α > 0 is an important
conceptual ingredient which motivated Anderson’s RVB construction. The GA suggests that
α = 1. Spanuet al. [107] have recently argued that the powerα may actually be smaller than
unity. Note that the particle-hole asymmetry that I find nearhalf filling is related to the powerα
of the vanishing of the superconducting order, as it is evident from the exact formula (3.28).
Clearly, we must haveα ≥ 1

2
. In the extreme limitα = 1

2
, the hole spectral weight is finite

at half filling (Z− ∝ x2α−1). I have not found any proof or disproof of a finite coherent hole
spectral weight at half filling, or any further bound on the value of α. The possibility of a
k-dependent exponentα was discussed in Ref. [105].

The limit x → 0 discussed here is relevant if we view it as a model of the phasewhen
superconductivity vanishes, at the underdoped end of the superconducting dome (and not at
half filling). This region of the phase diagram is sometimes called thespin-gap phase[7].
The ARPES intensities in this region of the phase diagram are very broad and the presence
or absence of well-defined coherent quasiparticle peaks is amatter of ongoing debate. From
the narrower viewpoint of a variational approach to thet-J model, this discussion is less
relevant. In the half-filled limit, magnetic correlations become important and the energy of the
pure BCS wavefunction can be lowered significantly by introducing antiferromagnetic and

7Here, we make the important assumption that the average particle number in the Gutzwiller-projected and in
the unprojected wavefunction are the same. This is not the case near half filling for simple BCS wavefunctions
in the grand-canonical ensemble, where the particle numberis allowed to fluctuate. This leads to subtle
issues with the Gutzwiller approximation in the grand-canonical ensemble which I will not discuss here. See
Refs. [41, 43, 44].
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staggered-flux order parameters in the mean-field Hamiltonian, Eq. (3.13) [34]. For a realistic
modeling of the cuprates at half filling, it would be necessary to construct spin and charge
excitations in such states.8

3.2.3. Effective Fermi surface for the coherent quasiparticle

The Fermi surface (FS;kF ) of a metal is defined as the locus in the Brillouin zone (BZ) with
gapless charge excitations. Equivalently, one defines the FS as the points in the BZ where the
one-particle normal Green’s function [see (3.3)] divergesat the Fermi energy9 [108],

G(kF , ω = 0) → ±∞ . (3.33)

In the absence of single-particle excitations at the Fermi energy (e.g. in the case of a super-
conductor), the definition of the Fermi surface is extended to theLuttinger surface[109, 110].
The Luttinger surface is defined as the locus in the BZ where theGreen’s function atεF

changes sign, i.e.

G(kF , ω = 0) → 0,±∞ . (3.34)

In the following, I will use the term Fermi surface in the moregeneral sense of a Luttinger
surface.

It has been emphasized recently in Refs. [111, 112] that an unambiguous experimental
determination of the Fermi surface in superconducting cuprates is difficult. The following
definitions of the Fermi surface are most commonly used in experiments [29, 30]:

• locus of minimal gap- This is either determined from the experimental dispersion or
from the maximum in the spectral intensity at the Fermi energy, A(k, ω = 0).

• maximum gradient method- The momentum distribution may be determined experi-
mentally fromnk =

∫

f(ω)A(k, ω) dω. The experimental FS is then defined as the
point on a cut in the BZ where∂knk is maximal.

• half-nk - The locus of points wherenk = 1
2
.

• normal-state FS- The sample may be heated up aboveTc (or T ∗ in the underdoped
region) and the location of gapless excitations can be found.

I will not further explore the issues related to the determination of the experimental FS. Note,
however, that the various definitions of the FS usually agreewithin the experimental uncer-
tainties. Furthermore, within conventionals-wave BCS theory with small gap parameter∆,
the various experimental definitions of the FS coincide withtheunderlying Fermi surfacein

8See also Section 3.4, where I model the pseudogap phase with more complicated mean-field states, however
without taking into account the Gutzwiller constraint exactly.

9Here and in the following, I chooseεF = E0
N+1

− E0
N as origin forω.
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the BCS theory [111], defined as

ξkF
= 0 , (3.35)

whereξk is the normal dispersion in the BCS Hamiltonian, (3.13).

In the context of the variational quasiparticle excitationdiscussed in this thesis, we may
write the single-particle Green’s function as

G(k, ω) =
Z+

k

ω − ǫ+
k

+
Z−

k

ω + ǫ−
k

+Ginc
k

(ω) , (3.36)

where theGinc
k

(ω) is the smooth incoherent background andǫ± are the variational excitation
energies given in (3.24). Neglecting the incoherent background and under the assumption of
a symmetric dispersionǫ−

k
= ǫ+

k
, the Luttinger condition (3.34) becomes

Z+
kF

= Z−
kF
. (3.37)

This motivates our definition of theeffective Fermi surfaceas the points in the BZ which
satisfy relation (3.37). Note that the assumptionǫ−

k
= ǫ+

k
is not evident close to half filling.

However, Yunokiet al. [99] have found a symmetric quasiparticle dispersion in thecase of a
d-wave superconductor,10 which gives support to this assumption. Note also that in thecase of
an unprojected BCS superconductor, whereZ+

k
= u2

k
andZ−

k
= v2

k
, the effective FS and the

underlying FS coincide. This is even the case in the strong-coupling approach within the GA,
whereZ+

k
= gtu

2
k

andZ−
k

= gtv
2
k
. Putting aside the correctness of the assumption of a sym-

metric dispersion and the negligence of the incoherent background, a deviation of the effective
Fermi surface (3.37) from the underlying one (3.35) indicates a departure from conventional
BCS theory and a breakdown of the simplest version of the Gutzwiller approximation.

10These authors apply an additional Jastrow factor to the variational ground state and excitations.
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3.3. Spectral weight of a Gutzwiller-projectedd-wave
superconductor

The main results of this section have been published in [102].

3.3.1. Introduction

Shortly after the discovery of superconductivity in copper-oxide compounds [2], Anderson
proposed a Gutzwiller-projected BCS wavefunction which would describe the super-
conducting ground state of high-temperature superconductors [12]. The variational approach
to superconducting cuprates based on Anderson’s original proposal has since had a lot of
success, while the strong Coulomb repulsion and the nonperturbative nature of the problem
make other approaches extremely difficult. Interest in projected wavefunctions as variational
ground states for cuprate superconductors was initiated byseveral research groups in the late
80’s [27, 28] and has led to considerable activity in the field. The Gutzwiller-projected wave-
functions show a large overlap with exact ground states on small clusters and have low vari-
ational energies for thet-J model [104, 113]. Furthermore, several experimental properties
of the cuprates like the zero-temperature phase diagram andd-wave pairing symmetry are
extremely well predicted within this approach [6, 33].

Due to considerable progress of the experimental techniqueof angle-resolved photo-
emission spectroscopy (ARPES) on cuprates, more and more high-quality data on the low-
lying spectral properties of these compounds have been madeavailable in recent years [29, 30].
Experimentally, the low-energy excitations of superconducting cuprates are known to re-
semble BCS quasiparticles (QPs) [119]. It is therefore interesting to theoretically explore
the wavefunction of projected QP excitations and compare them to unprojected BCS QPs.
The most apparent differences are the doping dependency of the nodal Fermi velocity
and the renormalization of the nodal QP spectral weight and of the current carried by
QPs [33, 97, 99, 100, 101]. In this section, we further analyze the properties of the super-
conducting ground state and the QP excitations with the variational Monte Carlo tech-
nique (VMC) [27]. We calculate the equal-time Green’s functions, both normal and anoma-
lous, in the Gutzwiller-projected state and derive from them the QP spectral weights for addi-
tion and removal of an electron at zero temperature. The mainconclusion of our study is that,
due to a nontrivial interplay of superconductivity and strong Coulomb repulsion (Gutzwiller
projection), the coherent electron and hole spectral weights are renormalized differently. A
natural way to describe this asymmetry is to define the “effective Fermi surface” as the locus
of points where the electron and the hole spectral weights are equal. Thus defined Fermi sur-
face acquires an additional outward bending in the antinodal region as compared to the original
underlying Fermi surface. This bending is a signature of a deviation from the BCS theory and
may be responsible for the geometry of the Fermi surface observed in ARPES experiments.
The validity of Luttinger’s rule [109] in strongly interacting and superconducting materials
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has recently been questioned experimentally and theoretically [29, 30, 111, 112]. Our find-
ings provide further indication of its inapplicability in strongly correlated superconductors.

The remaining part of Section 3.3 is organized as follows. Section 3.3.2 contains the
definition of the model and the wavefunctions used in our calculations. In Section 3.3.3, I
describe our results on the QP spectral weights. Section 3.3.4 is devoted to the calculation
of the equal-time anomalous Green’s function. Finally, Section 3.3.5 discusses the “effective
Fermi surface” and its deviation from the underlying Fermi surface.

3.3.2. The model

In the tight-binding description, the cuprates are modeledby electrons hopping on a square
lattice. The appropriate model is thet-J Hamiltonian:

Ht-J = −t
∑

<i,j>,σ

Pd c
†
iσcjσ Pd + J

∑

<i,j>

(Si · Sj −
ninj

4
) (3.38)

acting in the Hilbert space with less than two electrons per site. Hereniσ = c†iσciσ, Si =
1
2

∑

σ,σ′ c
†
iσσσσ′ciσ′ , c†iσ is the electron creation operator in the Wannier state at site i, andσ

are the Pauli matrices. The no-double occupancy is preserved by the Gutzwiller projector
Pd = Πi[1 − ni↑ni↓].

The t-J model can be viewed as the large-U limit of the one-band Hubbard model,
neglecting the 3-site-hopping term. Provided that the model is analytic int/U , doubly occu-
pied sites can be re-introduced perturbatively to recover the full Hilbert space of the Hubbard
model [15, 33]. Although the inclusion of these correctionspresent no major difficulty, we
choose to neglect them here. In most quantities, only small corrections arise from finite
double occupancy [33, 100], which makes this approach to thelarge-U Hubbard model con-
sistent. Furthermore, it has been argued that thet-J model is in fact more appropriate than the
one-band Hubbard model in describing the CuO2 planes [16].

We consider the usual variational ground state [27],

|ΨN〉 = PNPd|d-BCS(∆, µ)〉 , (3.39)

wherePN is the particle number projector on the subspace ofN electrons. We will denoteL
the total number of sites. Both particle number and number of sites are even.|d-BCS〉 is the
ground state of the BCS mean field Hamiltonian with nearest-neighbor hopping andd-wave
pairing symmetry on the square lattice:|d-BCS〉 = Πk[uk + vkc

†
k↑c

†
−k↓]|0〉 ∝ Πk,σγkσ|0〉.

γkσ = ukckσ − σvkc
†
−kσ̄, u2

k
= 1

2
(1 + ξk

Ek

) = 1 − v2
k
, Ek =

√

ξ2
k

+ ∆2
k
, ξk = −2(cos kx +

cos ky) − µ, ∆k = ∆(cos kx − cos ky). The wavefunction (3.39) has two free parameters:∆
andµ. These variational parameters are chosen to minimize the energy of thet-J Hamiltonian
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(3.38) for the experimentally relevant valuet = 3J and for every doping level. I use the
optimized parameters from [34].

The following ansatz is used for the excited states [6, 26, 33, 97, 99, 100, 101],

|ΨN,k,σ〉 = PNPdγ
†
kσ|d-BCS〉 . (3.40)

In the following, the normalized versions of (3.39) and (3.40) will be denoted by|N〉 and
|kσ,N〉, respectively:

|N〉 = ‖ΨN‖−1|ΨN〉 , (3.41a)

|kσ,N〉 = ‖ΨN,k,σ‖−1|ΨN,k,σ〉 . (3.41b)

The RVB wavefunction (3.39) implements both strong electron correlations and super-
conductivity.11 It is known to have a considerable overlap with the true ground state of the
t-J model at non-zero hole doping on small clusters [113, 104, 114, 115]. There is also
numerical support from exact diagonalization studies indicating well-defined BCS-like QPs
as low-energy excitations of thet-J model [116]. Therefore, the excited trial states (3.40)
are expected to be close to the true excitations of thet-J model. However, here we are more
interested in the physical content of the proposed wavefunctions than in their closeness to the
eigenstates of a particular Hamiltonian.

11As an alternative to the canonical formulation in Eqs. (3.39) and (3.40), one can work in the grand-canonical
ensemble, without the particle-number projector, but withan additional fugacity factor [41, 44]. Here, the
canonical scheme is chosen for numerical convenience, as itis commonly done in most VMC studies.
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3.3.3. Quasiparticle spectral weights

As I discussed in Section 3.2.2, the coherent12 spectral weights are defined as the overlap
between the bare electron or hole added ground state and the QP excitations of the model,

Z±
k

= |〈kσ,N ± 1|c±
kσ|N〉|2 . (3.42)

The particle spectral weight can be calculated from the relation [97]

Z+
k

=
1 + x

2
− nk , (3.43)

wherenk is the momentum distribution (equal-time normal Green’s function),

nk = 〈N |c†
kσckσ|N〉, (3.44)

andx = 1 − N
L

is the hole concentration.

The hole spectral weight can also be calculated from ground-state expectation values,13

with the help of the relation derived in Section 3.2.2,

Z+
k
Z−

k
= |Φk|2 , (3.45)

whereΦk is the superconducting order parameter (equal-time anomalous Green’s function),

Φk = 〈N − 1|ck↑c−k↓|N + 1〉 . (3.46)

Further, we define the total (coherent) spectral weight as

Zk = Z+
k

+ Z−
k
. (3.47)

The main contribution toZk is given byZ+
k

outside the Fermi surface and byZ−
k

inside. As I
discussed in Section 3.2.2, the weights must satisfy the upper boundsZk ≤ 1+x

2
andZ−

k
≤ nk.

Numerically, I compute the spectral weightZ−
k

by first computingZ+
k

andΦk, and then
using relation (3.45). The disadvantage of this method is large error bars around the center of
the Brillouin zone where bothZ+

k
andΦk are small.14 However, the precision is sufficient to

establish that the total coherent spectral weightZk is a smooth function ofk and has no singu-
larity at the nodal point. In order to avoid the singular points along the nodal direction of a
d-wave superconductor, I use periodic boundary conditions in one, and antiperiodic boundary

12Throughout this section, the coherent (quasiparticle) spectral weight is discussed; the word “coherent” is
sometimes omitted in the following.

13Note that I am assuming wavefunctions with conserved parityin this section, i.e.Z±
k

= Z±
−k

.
14Recently performed calculations ofZ−

k
by direct sampling of the excited states are free from this problem

[106, 117].
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conditions in the other direction. More technical details on the Monte Carlo algorithm can be
found in Section 2.1.2.

In Figs. 3.2 and 3.3, I plot the spectral weightsZ+
k

, Z−
k

, andZk along the contour0 →
(0, π) → (π, π) → 0 in the Brillouin zone for different doping levels. Figure 3.6shows the
contour plots ofZk in the region of the Brillouin zone where our method produces small error
bars.15 From these data, we can make the following observations.

(i) In the case of an unprojected BCS wavefunction, the total spectral weight is constant and
unity over the Brillouin zone. Within the Gutzwiller approximation, the total weight is a
constant equal to2x

1+x
. Taking the Gutzwiller projection into account exactly, wesee that

for low doping (x ≃ 3%), the spectral weight is reduced by a factor up to20 (which is
in qualitative agreement with the GA). The renormalizationis asymmetric in the sense
that the electronic spectral weightZ+

k
is more reduced than the hole spectral weightZ−

k
.

The total spectral weight is not constant, in disagreement with the GA. For higher doping
(x ≃ 23%), the spectral-weight reduction is much smaller. The electron-hole asymmetry
decreases and the total weight is closer to the GA predictions.

(ii) Since there is no electron-hole mixing along the zone diagonal, the spectral weightsZ+
k

andZ−
k

have a discontinuity at the nodal point. The data show that the total weight
is continuous across the nodal point. Strong correlation does not affect this feature of
uncorrelated BCS theory. Recently, it has been shown in Ref. [105] that the total spectral
weight of the Gutzwiller-projected (non-superconducting) Fermi sea is continuous across
the Fermi surface. This is consistent with our result.

In Ref. [119], the coherent spectral weights of a slightly overdoped sample of Bi2223
were measured along the cut(π, 0) → (π/2, π/2) and an almost constant total spectral weight
was reported in this experiment. It can be seen from Fig. 3.6 that the total spectral weight is
approximately constant along this cut, so the experimentalresult agrees well with this property
of the quasiparticle excitation.

An anisotropy of the ARPES intensity along the experimental FS (the so-called nodal-
antinodal dichotomy) was reported in a series of experiments [120, 121]. Experimentally, the
spectral weight measured in the anti-nodal region is suppressed in underdoped cuprates, while
it is large in the optimally doped and overdoped region. Usually, this effect is associated with
formation of some charge or spin order, static or fluctuatingone. From Fig. 3.6 we see that
a similar (but weaker) tendency can be observed in the framework of Gutzwiller-projected

15Our VMC results show qualitative agreement with the hole spectral weight reported in Ref. [101] where the
authors used the Gutzwiller approximation to calculate thesame quantity in the large-U Hubbard model. It
should be noted, however, that the asymmetry we find near halffilling cannot be explained within the standard
Gutzwiller approximation. In a recent publication, Fukushima [43] proposes an extended Gutzwiller approxi-
mation scheme. The author claims that his scheme can reproduce the asymmetry in our VMC results. Our
results are consistent with other recent VMC calculations [100, 105, 106, 118, 103] and earlier calculations
of Z+

k
in Ref. [33].
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*

*
Figure 3.2.: QP spectral weights for 6 holes (upper plot,x ≃ 3%) and 22 holes (lower plot,x ≃ 11%)

on 196 sites. The spectral weights are plotted along the contour0 → (0, π) → (π, π) → 0
(shown in inset). Plus signs (+, blue) denote the particle spectral weightZ+

k
, crosses (×,

red) denote the hole spectral weightZ−
k

, error bars are shown. Solid dots (black) denote
their sum, the total coherent spectral weightZk, error bars not shown. On the horizontal
axis, the red star (∗) denotes the intersection with the underlying Fermi surface along the
0 → (0, π) direction; the thick green dot is the nodal point.Z+

k
andZ−

k
jump at the

nodal point, whileZk is continuous. The intersection with the effective Fermi surface
(see Section 3.3.5) is marked by an green arrowhead. On the diagonal (last segment),k is
given in units of

√
2.

quasiparticle excitations.16 However, the experimentally observed effect is much stronger and
a claim that the nodal-antinodal dichotomy can be explainedwithin this framework would be
too hasty.

16If we use the effective FS defined here to compare with the experimental one.
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*

*
Figure 3.3.: Same plot as Fig. 3.2 of the QP spectral weights for 34 holes (upper plot,x ≃ 17%) and

46 holes (lower plot,x ≃ 23%) on 196 sites.
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3.3.4. Superconducting order parameter

Figure 3.4.: Doping dependency of the nearest-neighbor superconducting orderparameterΦij (calcu-
lated in the 14×14 system). The error bars are smaller than the symbol size. The same
quantity calculated in the Gutzwiller approximation is also shown for comparison (green
dashed line). The variational parameter∆ is shown with the scale on the right.

In Fig. 3.4, I plot the nearest-neighbor superconducting correlationΦij [the Fourier trans-
form of Φk defined in (3.46)] as a function of doping. This curve shows close quantita-
tive agreement with the result of Ref. [33], where the authorsextracted the superconducting
order parameter from the long-range asymptotics of the nearest-neighbor pairing correlator,
ΦSC = limr→∞〈c0c1c†rc†r+1〉. With the method employed here, I find the same qualitative
and quantitative conclusions as previous authors [27, 33]:vanishing of superconductivity at
half filling x → 0 and at the superconducting transition on the overdoped sidexc ≃ 0.3.17

17It is interesting to note that I observe a sensitive dependency of the superconducting order parameter on the
variational parameterµ at high doping (as∆ → 0). This results from projecting to the particle-number tail
of an almost normal state (∆ ≃ 0), if the value ofµ is far away from the Fermi-sea chemical potential.
Remarkably, the optimal variational value ofµ approaches the Fermi-sea chemical potential as∆ → 0 [34].
In the Gutzwiller-projected Fermi sea,µ can no longer be treated as a variational parameter, but is fixed by
the particle-number constraint. (The variational parameterµ must notbe confused with the physical chemical
potential.)
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The optimal doping is close toxopt ≃ 0.18. In the same plot, I also show the commonly
used Gutzwiller approximation where the unprojected expectation value is renormalized by
the factorgt = 2x

1+x
[6]. The Gutzwiller approximation underestimates the correct value by

approximately25%.
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Figure 3.5.: Pairing correlationΦk in the Brillouin zone at different doping levels:x ≃ 3% (upper
left), 11% (upper right),17% (lower left) and23% (lower right) in a14 × 14 system
with periodic-antiperiodic boundary conditions. The dashed red line is the unprojected,
underlying Fermi surface.

In Fig. 3.5, I show contour plots of the superconducting order parameterΦk for four values
of doping. It resembles qualitatively the unprojectedd-wave pairing amplitude, but is some-
what distorted due to the particle-hole asymmetry (see discussion in the previous and the
following sections).
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3.3.5. Fermi surface
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Figure 3.6.: Contour plots of the total QP spectral weightZk (black lines). The underlying FS (long-
dashed red line) and effective FS (short-dashed green line) are alsoshown. The doping
levels arex ≃ 3% (top left),11% (top right),17% (bottom left) and23% (bottom right).
The+ signs indicate points where we can compute the values within small error bars.
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As discussed in Section 3.2.3, theeffective FSis defined as the locusZ+
kF

= Z−
kF

. In
Fig. 3.6, I plot the underlying and the effective FS which were obtained by VMC calculations.
The contour plot of the total QP weight is also shown in this figure. It is interesting to note the
following points.

(i) In the underdoped region, the effective FS is open and bent outwards (hole-like FS). In
the overdoped region, the effective FS closes and embraces more and more the under-
lying one with increasing doping (electron-like FS).

(ii) Luttinger’s rule [109] for the effective FS is clearly violated in the underdoped region,
i.e. the area enclosed by this FS is not conserved by the interaction; it is larger than the
one enclosed by the underlying Fermi surface.

(iii) In the optimally doped and overdoped region, the totalspectral weight is approximately
constant along the effective FS, within error bars. In the highly underdoped region, we
observe a small concentration of the spectral weight aroundthe nodal point (≃ 20%).

A large “hole-like” FS in underdoped cuprates has been reported in ARPES experiments by
several groups [120, 122, 123]. The effective FS that I find here agrees with these experimental
results.

It should be noted that a negative next-nearest hoppingt′ would lead to a similar FS
curvature as I find in the underdoped region. I would like to emphasize that the original
t-J Hamiltonian as well as the variational states do not containany t′. Our results show that
the outward curvature of the FS is due to strong Coulomb repulsion, without need oft′. Next-
nearest hopping terms in the microscopic description of thecuprates may not be necessary to
explain the FS curvature found in ARPES experiments. Remarkably, if the next-nearest hop-
ping t′ is included in the variational ansatz (and not in the original t-J Hamiltonian), a finite
and negativet′ is generated, as it was shown by Himeda and Ogata [124]. Apparently, in this
case the underlying FS has the tendency to adjust to the effective FS. A similar bending of
the FS was also reported in the recent analysis of the currentcarried by Gutzwiller-projected
quasiparticles [100]. A high-temperature expansion of themomentum distributionnk of the
t-J model was done in Ref. [125] where the authors find a violation of Luttinger’s rule and a
hole-like curvature of the FS. Our findings provide further evidence along this line.

A natural question is the role of superconductivity in the unconventional bending of the FS.
In the limit ∆ → 0, the variational states are Gutzwiller-projected excitations of the Fermi sea
and the spectral weights are step-functions at the (underlying) FS. In a recent paper [105] it was
shown thatlim

k→k
+
F
Z+

k
= lim

k→k
−
F
Z−

k
for the Gutzwiller-projected Fermi sea, which means

that the underlying and the effective FS coincide in that case. This suggests that the “hole-
like” FS results from a nontrivial interplay between strongcorrelation and superconductivity.
We lack a qualitative explanation of this effect. However, it may be a consequence of the
proximity of the system to the non-superconducting “staggered-flux” state [34, 126] or to
antiferromagnetism [49, 33] near half-filling.
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3.4. An SU(2) approach to the pseudogap phase

The results presented in this section have been submitted for publication [127].

3.4.1. Introduction

The most unusual and debated feature of high-temperature superconductivity (HTSC) is the
pseudogap (PG) phase, the high-temperature phase in the underdoped region of the phase
diagram between the destruction of superconductivity atTc and the pseudogap temperature
T ∗ [128, 129]. While the zero-temperature phase diagram of HTSCis relatively well under-
stood, there is currently much experimental and theoretical interest in the intermediate-
temperature PG phase. In this phase, several surprising experimental features show up: e.g.
the ARPES spectra show a state which is partially gapped on theexperimental Fermi sur-
face [29, 30, 130, 131, 132, 133, 134].

Theoretically, the low-temperature physics of HTSC is welldescribed by variational wave-
functions of thet-J model [3, 4, 5, 6, 26, 27, 113, 135]. The antiferromagnetic parent
state at half filling is destroyed as doping is increased. Dueto the gain of spin-exchange
energy in the Gutzwiller-projected state, ad-wave mean-field order is favored away from
half filling. The characteristic dome for the superconducting order can be reproduced vari-
ationally [33, 102]. Low-lying Gutzwiller-projected quasiparticle excitations reproduce well
many experimental features [33, 97, 98, 99, 102, 106, 118, 136]. The main disadvantage of
the variational approach is that it is a zero-temperature theory and cannot easily be extended
to finite temperature or to high-energy excitations [5].

Many years ago, it was noticed that there is a redundant description of Gutzwiller-
projected fermionic wavefunctions exactly at half filling,parameterized by local SU(2)
rotations [137, 138]. Away from half filling, this redundancy is lifted. Later, Wen and Lee
et al. proposed a slave-boson field theory, where this redundancy is promoted to a dynamical
SU(2) gauge theory away from half filling [139, 140, 141]. Theadvantage of the SU(2) slave-
boson approach is that it incorporates strong correlationswhen gauge fluctuations around the
mean-field saddle points are included. Integrating over allgauge-field configurations in this
approach enforces the Gutzwiller constraintni < 2. The slave-boson mean-field theory is then
not restricted to low temperatures.

The SU(2) approach to thet-J model predicts that a state with staggered magnetic fluxes
through the plaquettes of the square lattice is close in energy to thed-wave superconductor at
low doping [126, 139, 140]. In fact, a staggered local SU(2) rotation on nearest-neighbor sites
transforms thed-wave superconductor (SC) into the staggered-flux (SF) state. These two states
are identical at half filling. At small doping, one expects the local symmetry to be weakly
broken, and the SU(2) rotation provides a route to constructa low-lying non-superconducting
variational state of the weakly dopedt-J model. This led to the proposal by Wen and Lee
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that the pure SF state should be realized inside vortex coresof HTSC [126]. Indeed, it was
confirmed numerically that the Gutzwiller-projected SF state is a very competitive variational
state for thet-J model [34]. Further support for the SU(2) approach came fromthe discovery
of SF correlations in the Gutzwiller-projectedd-wave superconductor [142].

In this work, we restrict ourselves to the so-called “staggeredθ-mode” which interpolates
between the SC and the SF states [143]. As the temperature is increased throughTc in the
underdoped compounds, vortices proliferate and eventually destroy the phase coherence. In
order to form energetically inexpensive vortices in the superconductor, the order parameter
rotates to the SF state inside the cores. However, in contrast to vortex cores, we do not ex-
pect a pure SF state to be realized in the bulk. The PG state should be viewed as a thermal
average over different intermediate states between the SF and the SC state, parameterized by
appropriate SU(2) rotations.

In the superconducting phase at low temperature, it is sufficient to include Gaussian fluctu-
ations away from the superconducting state. In this framework, Honerkamp and Lee found
that coupling to the Gaussianθ-mode strongly depletes the antinodal quasiparticles [144].
This is in contrast to zero temperature, where Gutzwiller-projected excitations show rather
weak reduction of spectral weight in the antinodal region asI have shown in Section 3.3.
At temperatures betweenTc andT ∗, strong fluctuations towards the SF state are expected to
affect the electronic spectral functions even more. In the present work, we are interested in the
electron spectral intensities in the pseudogap region, i.e. in the presence of large fluctuations
of the order parameter between the SC and the SF states.

Our model bears some similarity to theσ-model approach for the SU(2) gauge theory of
the t-J model, introduced by Leeet al. [3, 140]. In contrast to these authors, we do not use
a self-consistent mean-field treatment, but we consider an effective model with input from
Gutzwiller-projected variational wavefunctions of thet-J model.

A complementary study was conducted by Honerkamp and Lee whoconsidered SU(2)-
fluctuations in an inhomogeneous vortex liquid [145]. Theseauthors computed the density
of states and helicity modulus, and found that a dilute liquid of SF vortices would account
for the large Nernst signal observed in the pseudogap phase [146]. In the present work, we
are particularly interested in the implications of the fluctuating-staggered-flux scenario for the
ARPES spectra.

Finally, let us note that our model concerns the low-energy spectra of cuprate super-
conductors,|ω| . 200 meV. The interesting high-energy anomalies (|ω| ≃ 0.4 - 1 eV) which
were discovered in recent experimental [147, 148] and theoretical [103] works are not in the
scope of the current discussion.

The remaining part of Section 3.4 is organized in the following way. In Section 3.4.2,
we introduce the model and describe the observable (the spectral function) that we want to
study. In Section 3.4.3, we give a detailed account on the spectra of the pure (unaveraged)
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states. Finally, in Section 3.4.4 we present our results forthe averaged spectral functions and
in Section 3.4.5 we discuss the experimental implications.

3.4.2. The model

The local SU(2) rotation for thet-J model [3] is conveniently written using spinon doublets
in the usual notation,ψ† = (c↑, c

†
↓). In terms of these doublets, the SF state is defined by

the mean-field HamiltonianHSF =
∑

〈i,j〉ψ
†
iU

SF
ij ψj − µ

∑

iψ
†
iσ3ψi whereUSF

ij = −χσ3 −
i∆(−)ix+jy , σα are the Pauli matrices, and the sum〈i, j〉 is taken over pairs of nearest-neighbor
sites of the square lattice. In this work, we restrict ourselves to the following SU(2) rotation,
Uij → g†iUijgj, with gj = ei(−)j θ

2
σ1. Note that forθ = π

2
, the SF Hamiltonian is rotated to

a d-wave superconductor,USF
ij → USC

ij = −χσ3 + ∆(−)ix+jxσ1. The intermediate states
for generalθ contain bothd-wave pairing and staggered fluxes through the plaquettes ofthe
square lattice.

We now consider the mean-field Hamiltonian at the intermediate values ofθ between0
andπ:

HMF (θ) =
∑

〈i,j〉
ψ

†
i g

†
i (θ)U

SF
ij gj(θ)ψ

†
j

− χ′
∑

〈〈i,j〉〉
ψ

†
iσ3ψj − µ

∑

i

ψ
†
iσ3ψi .

(3.48)

As usual, the chemical potentialµ is added to enforce the desired average particle number.
We have also added a phenomenological next-nearest-neighbor hoppingχ′. Note that the
parametersχ, χ′, and∆ of the Hamiltonian (3.48) are the effective parameters describing
the variational ground state and quasiparticle spectrum ofthe t-J model, for the physically
relevant valuest ≃ 3J . For example, the hoppingχ only weakly depends on doping (at small
doping) and is approximately given byχ ≃ t

3
≃ 100 meV [33, 99, 101]. At10% doping,∆/χ

decreases slightly from∼ 0.25 in the SC state to∼ 0.2 in the SF state18 [34].

The value of the next-nearest-neighbor hopping is taken to be χ′ = −0.3χ, to mimick
the experimental Fermi surface observed in cuprates. Earlier studies of Gutzwiller-projected
wavefunctions suggest that such an effective next-nearest-neighbor hopping may appear in the
underdoped region as a consequence of strong correlations,even in the absence of the term in
the physical Hamiltonian (see Section 3.3 and Refs. [102, 124]). Note that we keep this term
unrotated in (3.48).

18For the numerical averaging, we interpolate the order parameter ∆ in s = cos θ as ∆(s) =
√

∆2
s=1s

2 + ∆2
s=0(1 − s2). From the variational procedure in Ref. [34], att = 3J and 10% doping, the

SF and SC variational values of the order parameter not exactly identical: ∆s=1 ≃ 0.2 and∆s=0 ≃ 0.25,
respectively. This weak dependency of the order parameter on s is not important for the main conclusions of
our study.
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In our model, physical quantities at finite temperature are given by an appropriate func-
tional integral over the mean-field parametersUij, weighted by a free energy which is al-
most flat in the directions parameterized bygj. As indicated earlier, we restrict our study to
staggered SU(2) rotations parameterized by the angleθ. At the same time, we neglect the
amplitude fluctuations of the order parameter∆, since the energy scale associated with these
fluctuations is high – of the order ofT ∗, in our approach. On the other hand, the energy scale
εc = ESF − ESC , responsible for theθ-fluctuations, is much lower – at 10% doping it is esti-
mated asεc ≃ 0.02J ≃ 30K (per lattice site) from variational Monte Carlo calculations [34].

The free energy describing classical fluctuations ofθ can be written in terms of aθ-
dependent “condensation energy” (of orderεc) and a gradient termρ(∇θ)2 [145]. We assume
a situation where the resulting correlation lengthξ =

√

ρ/εc is much larger than one lattice
spacing.19 In this case, the characteristic temperature, below which the condensation energy
selects the superconducting state over the staggered-flux one, isTc ∼ ρ/ ln ξ (the same scale
determines the temperature of the Kosterlitz-Thouless-type transition).20 For temperatures
above that scale but belowρ,

ρ/ ln ξ < T < ρ , (3.49)

the order parameter slowly varies in space and takes all possible values related by SU(2)
rotations. Therefore, in this temperature range, we can approximate the classical fluctuations
by an equal-weight statistical average over the uniform states with all possible values ofθ. The
corresponding integration measure forθ is

∫ 1

0
d(cos θ), inherited from the invariant measure

on SU(2).

We calculate the spectral functionAθ
k
(ω) = − 1

π
ImG(k, ω + iΓ) whereG is the single-

particle Green’s function21 of HMF , Eq. (3.48). Note thatω is measured with respect to
the Fermi energy throughout Section 3.4. As explained above, the spectra in the pseudogap
phase are modeled by the averages of this spectral function over the order-parameter space,
Ak(ω) =

∫ 1

0
d(cosθ)Aθ

k
(ω). The spectral functions of the pure states [Aθ

k
(ω)] are sums of

delta functions. After averaging, the spectral functions acquire an intrinsic width. In addition,
we introduce a lifetime broadeningΓ to make the figures more readable.

19For simplicity, we do not distinguish between the two stiffnesses: forθ and for the superconducting phase.
We assume them to be of the same order and much larger thanεc. This assumption does not fully agree with
earlier numerical calculations with Gutzwiller-projected wavefunctions (where the superfluid stiffness was
estimated of the same order asεc) [34], but is consistent with the experimental estimates ofξ of order 5-10
lattice spacings. See, e.g., S. H. Panet al., Phys. Rev. Lett.85, 1536 (2000) or I. Maggio-Aprileet al., ibid.
75, 2754 (1995).

20Y. Okwamoto, J. Phys. Soc. Japan53, 2434 (1984); A. S. T. Pires, Phys. Rev. B50, 9592 (1994).
21Note that the unit cell forHMF [Eq. (3.48)] contains two sites. Therefore, one may define the normal Green’s

function as a 2×2 matrix. However, for comparison with the ARPES intensity,we are considering here the
Green’s functionG(t) = iθ(t)〈{ck(t), c†

k
(0)}〉 which corresponds to the sum over all entries of the matrix

Green’s function. SinceHMF is a quadratic model,G(k, ω) (and its spectral function) is independent of
temperature. The intensity measured in direct photoemission at finite temperature is given by this spectral
function times the Fermi distribution, see Sect. 3.1.1.
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3.4.3. Pure states

In order to understand the averaged spectral function, we first outline how the intermediate
states evolve ass = cos θ is increased froms = 0 (SC state) tos = 1 (SF state). In Fig. 3.8,
we plot the FS (more precisely the Luttinger surface)22 and the spectral intensity at the Fermi
energy. As the parameters is increased from0, the BCS FS gradually deforms to the well-
known pocket around(π

2
, π

2
) of the SF state. However, the points on the SC FS where it

crosses the diagonal(π, 0)-(0, π) do not move ass is changed. We will call themSU(2)-
points, because at these points, the full SU(2) symmetry is intact even away from half filling.
We will comment more on this later. As we increases, the SC gap, symmetric with respect to
the Fermi level, decreases and closes ats = 1 [∆SC = 2(cos kx − cos ky) ∆

√
1 − s2]. At the

same time, the SF gap opens on the diagonal(π, 0)-(0, π) at the energyω ≃ −µ̃ [we define
µ̃ = µ − 2χ′ cos kx cos ky]. The SF gap value is∆SF ≃ 2(cos kx − cos ky) ∆ s. The spectral
weight is transferred among the four bands and all of them gain intensity in the intermediate
states. However, in most parts of the zone, there is only a single strong band.

The SU(2)-points we mentioned in the last paragraph belong in fact to SU(2)-surfaces (see
illustration in Fig. 3.7) wherẽµ = 0. On these surfaces, the full SU(2) symmetry is intact even
away from half filling, in the sense that the mean-field spectra are degenerate and independent
of s = cos θ [if we neglect the weak dependency∆(s)].

A schematic plot of the band structure and an illustration ofthe spectral-weight transfer as
we go from the SC to the SF state is shown in Figs. 3.9, 3.10, and3.11 on cuts parallel to the
nodal direction(0, 0)-(π, π). The behaviour is qualitatively similar for all parallel cuts. The
strong weights stay on the respective bands as they continuously move, except in a small stripe
between the diagonal(0, π)-(π, 0) and the SC FS, outside the SF pocket (Regions II and III
in Fig. 3.7). In Region II (̃µ < 0), the strong SC band at positive energy transfers some of its
weight to the SF band at negative energy (see Fig. 3.10). Here, the midpoint of the SF bands
lies at positive energy. In Region III (µ̃ > 0), the strong SC band at negative energy transfers
its weight to the SF band at positive energy (see Fig. 3.11). The midpoint of the SF bands is
now shifted below the Fermi energy.

22Known subtleties and discrepancies in the various definitions of the experimental FS [111, 112] are not in the
scope of this discussion; here, we use the theoretically well-defined Luttinger surface where the mean-field
Green’s function changes sign,G(kF , 0) = 0,±∞ [110]. The Green’s function described in Footnote?? is
used.
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Figure 3.7.: Schema of the different regions of the Fermi surface. The SC and SF gaps open near
the node (N-point) where they are small and do not overlap. The Fermi surface appears
as a gapless arc in Region I. In Region II, the two gaps start to overlap and form an
effective gap which is shifted upwards in energy (vertical arrows). The effective gap comes
down in energy as we go towards the antinode in Region II. Exactly at the SU(2)-points
on the diagonal(0, π)-(π, 0), the effective gap is symmetric. Beyond the SU(2)-points
(Region III), the midgap is shifted below the Fermi energy.
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Figure 3.8.: Contour plot of the spectral intensity at the Fermi energy for the pure states. Doping is
10% and we use a lifetime broadeningΓ = 0.2χ. The solid line (green) represents the
location of the Fermi surface where the Green’s function changes sign.From upper left
to lower right, we havecos θ = 0, 1

3 , 2
3 , 1. The upper-left plot shows the spectrum of the

d-wave superconductor, the lower-right plot displays the pure staggered-flux state.
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Figure 3.9.: Schematic evolution of the spectra along a cut parallel to the nodal direction,inside the
pocket (through Region I in Fig. 3.7, e.g. cutb in Fig. 3.12). The dot size is proportional
to the spectral intensity. From upper left to lower right, we havecos θ = 0, 1

3 , 2
3 , 1. Upper

left is the superconducting state, lower right is the staggered-flux state.
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Figure 3.10.: Same plot as in Fig. 3.9, but for a cut outside the pocket (through Region II in Fig. 3.7,
e.g. cutc in Fig. 3.12).

Figure 3.11.: Same plot as in Fig. 3.9, but for a cut outside the SU(2)-point (through Region III in
Fig. 3.7, e.g. cutd in Fig. 3.12).
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3.4.4. Averaged state

The gap considerations in the last section help now to understand the spectral properties of
the averaged pseudogap state. If we neglect the weak dependency ∆(s), the average gaps in
the pocket region (Region I in Fig. 3.7) may be estimated as〈∆SC〉 ≃ π

2
∆ (cos kx − cos ky)

and 〈∆SF 〉 ≃ ∆ (cos kx − cos ky). In the region outside the pocket, the midgap energy of
an effective gap is approximately given by−1

2
µ̃. If we are strict with the definition of the

effective gap and only consider the truly excitation-free region, then we come to a picture with
a gapless arc in Region I and an opening of an effective gap whenthe two gaps start to overlap
in Region II. This effective gap opens above the Fermi energy and comes down as we move
towards(π, 0). At the SU(2)-point, it is symmetric around the Fermi energy. Moving further
out in Region III, we find an effective gap with midgap below theFermi energy (see Fig. 3.7).

In Fig. 3.12, we plot the averaged spectral intensity at the Fermi energy,Ak(0), with a
quasiparticle lifetime broadening ofΓ = 0.2χ. The “turn in” of the Fermi surface at the
pocket edge, which is typical for the pure SF pocket (see lower-right plot in Fig. 3.8), was
used in Ref. [149] as an argument against the staggered-flux state since this feature is not
seen in experiments. We see here that this “turn in” is completely washed out by the averaging
(fluctuations towards the SC state). The “Fermi arc” of the averaged state (arc of high intensity
at the Fermi energy; see Fig. 3.12) is clearly bent towards the SC Fermi surface.
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Figure 3.12.: Averaged spectral intensity at the Fermi energy,Ak(0). Doping is10% and we use a
lifetime broadeningΓ = 0.2χ. The dashed lines are the Fermi surfaces of the SF and SC
states, respectively. The full spectra on the cutsa to c are given in Figs. 3.13 to 3.16.
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Figure 3.13.: Averaged spectral intensity along a cut in the BZ parallel to the nodal direction, cuta in
Fig. 3.12. The spectra are set off iny-direction bykx (in units ofπ). We use a lifetime
broadeningΓ = 0.12χ. The parameters used are∆(s) =

√

(0.2s)2 + 0.252(1 − s2)
and doping is10%. The energy is given in units of2χ ≃ 200 meV, the intensities are in
arbitrary units. The Fermi energy is atω = 0.
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Figure 3.14.: Same plot as in Fig. 3.13 but on cutb in Fig. 3.12.
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Figure 3.15.: Same plot as in Fig. 3.13 but on cutc in Fig. 3.12. An asymmetric effective gap with
midgap above the Fermi energy is formed.
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Figure 3.16.: Same plot as in Fig. 3.13 but on cutd in Fig. 3.12. An asymmetric effective gap with
midgap below the Fermi energy is formed.
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The averaged spectra on the cutsa to d in Fig. 3.12 are shown in Figs. 3.13 to 3.16. In
addition to the intrinsic width of the averaged state, we have chosen a lifetime broadening of
Γ = 0.12χ in these plots. From the averaged spectral intensities we can confirm what was
already anticipated from the pure states:

(i) In the region near the node, one can see a small symmetric suppression of intensity
coming from the superconducting gap centered at the Fermi energy and a very small
suppression coming from the staggered-flux gap centered above the Fermi energy. These
“gaps” are easily washed out by broadening effects (see Figs. 3.13 and 3.14) and may
give rise to a Fermi arc.

(ii) Outside the arc, the (pseudo-)gap opens asymmetrically, with midgap first above the
Fermi energy (Fig. 3.15). Closer to the BZ boundary, as we crossthe SU(2)-point, the
gap becomes asymmetric with midgap below the Fermi energy (Fig. 3.16). At the SU(2)-
point the gap is exactly symmetric (see illustration in Fig.3.7).

(iii) The backbending spectra at the edges of the two gaps lead to a doubling of the bands in
some locations of the BZ (see Figs. 3.14 and 3.15). This band-doubling only happens for
weak branches and at positive energy.

Finally, let us emphasize that the asymmetry we find in this work is in the location of
the two pseudogap coherence peaks with respect to the Fermi energy. A different asymmetry
in the renormalization of the coherent spectral weights in the superconducting state at low
doping has been reported in recent variational Monte Carlo calculations, where the Gutzwiller
constraintni < 2 is taken into account exactly (see Section 3.3 and Refs. [102,103, 105]). We
expect that such a spectral-weight asymmetry is also present in our model (if one includes the
Gutzwiller projection), but a confirmation would require anextensive numerical work.
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3.4.5. Experimental implications

The intensity measured in ARPES experiments is given byI(k, ω) = I0(k)f(ω)Ak(ω) where
f(ω) is the Fermi-Dirac function at a given temperature andI0 is the ARPES matrix element
(see Section 3.1.1). It is experimentally very challengingto construct unbiased methods to
measure the spectral function at positive energy (ω > 0) since the measurement must be done
at sufficiently low temperatures. Energy-symmetrization of the ARPES spectra [29, 30] is a
widely applied procedure, although it uses the assumption of a symmetric spectral function
[Ak(ω) = Ak(−ω)]. Using this assumption, the Fermi-Dirac function can be removed from
the experimental intensity,Isym(k, ω) = I(k, ω) + I(k,−ω) = I0(k)Ak(ω). However, there
is noa priori reason for the cuprate spectrum to be symmetric in energy. Asthe staggered-flux
scenario analyzed in this section shows, the assumption maybe wrong in the pseudogap phase
of the cuprates.

The most striking prediction of our model, the formation of astaggered-flux gap above
the Fermi energy, is difficult to verify directly in ARPES experiments, because this effect
only appears at positive energy, aroundω ≃ 100 meV. On the other hand, our more subtle
prediction, the combination of superconducting and staggered-flux gaps into a single asym-
metric gap, appearing in the anti-nodal region of cuprates may well be within with current
experimental reach. However, it is clear that any energy symmetrization procedure inevitably
destroys such signs in the ARPES spectra. A careful explicit removal of temperature- and
device-dependent factors from the ARPES intensity will be extremely important in order to
detect these effects. We hope that our work will stimulate experimental and theoretical effort
in this direction.
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Chapter 4.

Single hole and vortex excitation in the
doped Rokhsar-Kivelson quantum dimer
model on the triangular lattice

The main results of this chapter have been published in [93].For an introduction to quantum
dimer models, see Section 2.2.

We consider the quantum dimer model on the triangular lattice doped with mobile holes.
We choose the simplest form of the hole-hopping term which involves rearrangement of one
dimer. The Hamiltonian reads

HRK+hole =
∑

, ,

[−J(| 〉〈 | + | 〉〈 |) + v(| 〉〈 | + | 〉〈 |)]

+
∑

,

[−t (| 〉〈 | + | 〉〈 |) + 2u| 〉〈 |]

= HRK +Ht , (4.1)

where the first sum is performed over all three orientations of rhombi and the second sum
is over both up and down triangles and over all three possiblepositions of the hole on the
triangle.

We consider the model [Equation (4.1)] at the RK point,J = v = 1, in the sector with a
single hole. Att = u ≥ 0, the Hamiltonian has the usual “supersymmetric” properties of the
RK point: Its ground state is exactly known and given by the equal-amplitude superposition of
all possible states [64], and the quantum mechanics can be mapped onto a classical stochastic
dynamics in imaginary time [69]. We further consider the hole termHt as a perturbation in
t≪ 1, u≪ 1. To simplify the formulas, we assumeu = t ≥ 0, but our results are extendable
to u 6= t.

In the unperturbed HamiltonianHRK , the position of the holex is a static parameter. We
consider the hole on the infinite lattice (or, equivalently,on a large finite lattice far from the
boundary). In such a setup there are two degenerate ground states ofHRK for each hole
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on the triangular lattice

position. They correspond to two disconnected (topological) sectorsH±
x of the Hilbert space,

characterized by the values±1 of the vison operator

Vx = (−1)# of dimers intersectingΓx , (4.2)

for some pathΓx connecting the hole positionx to infinity (in a finite system to the boundary)
[81, 84]. The corresponding ground states are given by the sums over all dimer coverings in the
respective topological sector and are denoted asψ±

0 (x). Note that while the labeling± of the
two sectorsH±

x depends on the choice of the pathΓx, the sectors themselves do not. Changing
the pathΓx amounts to possible interchangesH+

x ↔ H−
x and, therefore,ψ+

0 (x) ↔ ψ−
0 (x).

This ambiguity reflects the Z2 degree of freedom in labeling the topological sectors, and it
will play an important role in the motion of the hole with a trapped vison. Technically, this Z2
gauge may be fixed by specifying (arbitrarily), for eachx, a reference dimer covering which
belongs toH+

x .

The two topological sectorsH±
x differ by the parity of the dimer intersection at infinity

and hence are indistinguishable by any local operator (since all correlation functions are short-
ranged in the RK model on the triangular lattice [79, 63]). Therefore, for excitations obtained
from the ground states by local operators (in the vicinity ofx), one can establish a one-to-one
linear mapping between the states inH+

x and inH−
x . Taking odd and even combinations of the

corresponding statesψ+(x) ± ψ−(x), we obtain the decomposition of the Hilbert space into
even and odd sectorsHe,o

x . Those even and odd sectors correspond to the non-vison and vison
sectors of excitations, respectively, introduced in Ref. [76].

The key observation for our discussion is that the Hamiltonian [Equation (4.1)] preserves
the decomposition intoHe,o

x at every pointx. While it is obviously true forHRK and the
potential part ofHt, one can also easily check that the hopping part ofHt does not have
matrix elements betweenHe

x andHo
x′ for neighboring sitesx andx′. Hence, the excitations

of the moving hole can also be classified into two branches: the non-vison branch [contained
in ⊕xHe

x] and the vison branch [contained in⊕xHo
x]. This splitting into even (non-vison) and

odd (vison) branches is a generic feature of any perturbative mixing of topological sectors in
quantum dimer models.
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4.1. Non-vison excitation branch

The energy spectrum of the non-vison branch can be calculated to first order in the perturba-
tive expansion inHt. We can fix the phases of all RK ground statesψe

0(x) = ψ+
0 (x) + ψ−

0 (x)
by taking the linear combination of all dimer coverings withthe amplitude one (up to normal-
ization). Then, the problem of the moving hole maps onto the tight-binding model with the
hopping amplitude

t1 = −〈ψe
0(x)|Ht|ψe

0(x
′)〉 (4.3)

for nearest-neighborx andx′ (here and in the following we always assume normalized states).
This amplitude may be converted into an expectation value inthe RK model with a static hole,

t1 = 2t〈ψ0(x)| 〉〈 |ψ0(x)〉 = 2t
N3

N1

, (4.4)

whereN1 andN3 are the numbers of dimer coverings with one site and one three-site triangle
removed, respectively. The ratioN3

N1
is well defined in the limit of the infinite system and can

be computed numerically with a suitable method. We have calculated this coefficient with
a Monte Carlo simulation similar to that in Refs. [63] and [76] (using clusters of toroidal
geometry with up to 17×17 sites), with the resultN3

N1
= 0.229 ± 0.001.

Taking into account the potential term inHt and performing the Fourier transformation
in x, the dispersion of the hole without a vison takes the form

Ek = −2t1(cos k1 + cos k2 + cos k3 − 3) , (4.5)

wherek1, k2, andk3 are the projections of the vectork on the three lattice directions (with
k1 + k2 + k3 = 0).
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x’ x x’x

Figure 4.1.: These two types of hopping processes set opposite correspondences between the sectors
H±

x andH±
x′ , and therefore cancel each other in (4.6).

4.2. Vison excitation branch

The hopping of a hole with a trapped vison is more complicated. The phases of the odd-
sector ground states,ψo

0(x) = ψ+
0 (x) − ψ−

0 (x), cannot be synchronized invariantly for allx,
which reflects the frustration of the vison motion [76]. The freedom of the Z2 gauge [the paths
Γx in (4.2) or, equivalently, the reference dimer configuration for eachx] corresponds to the
choice of the overall sign for the states inHo

x.

Regardless of the chosen Z2 gauge, the hopping amplitude vanishes to first order,

〈ψo
0(x)|Ht|ψo

0(x
′)〉 = 0 (4.6)

for nearest-neighborsx andx′. This can be seen as the cancellation of the two types of hopping
processes fromx to x′, corresponding to two possible dimer flips (Fig. 4.1). Each of those
dimer flips maps each ofH±

x into one ofH±
x′. The change in topological sector depends on the

chosen gauge, but the correspondence between the two sectorsH±
x and the two sectorsH±

x′ is
opposite for the two types of flips. As a result, the corresponding processes connecting two
ground statesψo

0(x) andψo
0(x

′) exactly cancel each other.1

A nontrivial hopping appears only to higher order in perturbation theory for some trajec-
tories. The second-order hopping amplitude

t2 =
∑

x′,n6=0

1

En

〈ψo
0(x)|Ht|ψo

n(x′)〉〈ψo
n(x′)|Ht|ψo

0(x
′′)〉 (4.7)

involves excitationsψo
n(x′) of HRK with energiesEn.

Similarly to the cancellation of the nearest-neighbor hopping amplitude to first order in
perturbation, one can show the cancellation to second orderof the hopping processesx →
x′ → x′′ connecting nearest-neighbor and next-nearest-neighbor sites [processes (a) and (b) in
Fig. 4.2]. One can verify that, in those cases, processes symmetric with respect to the linexx′′

exactly cancel each other.

1For an explicit derivation, see [94].
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Figure 4.2.: The two trajectories of the hole exactly cancel each other in the second order of the pertur-
bation theory [Equation (4.7)] for (a) nearest-neighbor and (b) next-nearest-neighbor hop-
pings. The non-vanishing second-order terms are (c) on-site and (d)next-next-nearest-
neighbor hoppings.

The only nontrivial hopping in the second order occurs for trajectoriesx → x′ → x′′

involving two links along the same direction [i.e., for the on-site energy correction and for
the next-next-nearest-neighbor hopping, processes (c) and (d) in Fig. 4.2]. The corresponding
next-next-nearest-neighbor hopping amplitude [Fig. 4.2(d)] to second order in perturbation
[Equation (4.7)] may be expressed via dynamic correlation functions in the RK model with a
static hole at positionx′,

t2 =

∫ ∞

0

dτ〈ψo
0(x)|Hte

−τHRKHt|ψo
0(x

′′)〉

= t2
∫ ∞

0

dτ I(τ) , (4.8)

where

I(τ) = 〈ψ0(x
′)|Pxx′e−τHRKPx′x′′|ψ0(x

′)〉 (4.9)

and

Pxx′ = | 〉〈 | − | 〉〈 |
Px′x′′ = | 〉〈 | − | 〉〈 | . (4.10)

The dynamic correlation functionI(τ) is well defined in the limit of infinite system size and
does not depend on the topological sector in this limit. It may be computed with a classical
Monte Carlo method as in Ref. [76]. Using clusters of toroidal geometry and up to 17×17
sites, we find

∫∞
0
dτ I(τ) = −1.51 ± 0.08 (observe that it is negative).

Note that the sign oft2 in (4.8) corresponds to a particular relative gauge choice at points
x andx′′: the reference dimer coverings atx andx′′ are connected by two dimer flips on
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Figure 4.3.: (a) We fix the relative gauge at the next-next-nearest-neighbor sites byrelating the refer-
ence configurations inH+

x andH+
x′′ via two consecutive dimer flips on opposite sides of

the linexx′x′′. (b) The four sublattices connected by the hopping of the vison-hole bound
state. This composite excitation can only hop by multiples of two lattice periods.

oppositesides of the linexx′x′′ (Fig. 4.3). One can show that this local gauge convention for
any two sites separated by two lattice periods can be consistently extended to a global gauge
on the sublattice of such sites (with the period of this sublattice equals twice that of the original
lattice). There are four such sublattices (Fig. 4.3), and the hole-vison excitation hops on each
of them independently, without a possibility to cross over to another sublattice. The resulting
dispersion relation is that of the tight-binding model withthe doubled lattice constant and the
hopping amplitude given by (4.8),

E
(v)
k

= −2t2(cos 2k1 + cos 2k2 + cos 2k3) + ε0 . (4.11)

The on-site energyε0 is equal to that in the non-vison sector in (4.5). To leading order int, it
is given byε0 = 6t1.

The hole-vison excitations with dispersion (4.11) are quadruply degenerate (by sublattice)
for each value ofk in the Brillouin zone of the doubled lattice. While we have explicitly
demonstrated this degeneracy to second order, it can be extended to all orders of perturbation
theory. In fact, this degeneracy is determined by the symmetries of the original Hamiltonian
[Equation (4.1)] in the vison sector and can thus be promotedfrom a perturbative argument to
the exact spectrum. The exact degeneracy can be proven usingthe translational invariance of
the Hamiltonian, together with the symmetry under point inversion (rotation byπ) and time
reversal (see Appendix A). Physically, this degeneracy canbe understood as the cancellation
of virtual processes for the flux-carrying excitation on thefrustrated triangular lattice.



Finally, let us note that, while our derivation of the vison-hole spectrum was formally done
at the RK point, its form and degeneracy are the same in the whole liquid phase away from
the RK point (estimated to extend to the region0.8 . v

J
≤ 1 in Ref. [80]), provided the

hole hopping is small. Only the numerical coefficients in thehopping amplitudest1 andt2
are modified in this case. Furthermore, our results equally apply when more than one hole is
present in the system as long as the holes are sufficiently farapart and do not interact with
each other.

4.3. Summary

In this chapter, we have calculated the dispersion of a single mobile hole in the RVB liquid
phase of the doped RK quantum dimer model on the triangular lattice. We find two branches
of excitations: one for the bare hole and the other for a hole-vison bound state. The effective
motion of the hole-vison state is strongly modified by the Z2 flux associated with the vison.
Interference effects due to lattice frustration reduce thebandwidth of this type of excitation
and lead to additional degeneracies. These are general properties which should be observed in
any doped Z2 RVB liquid on frustrated lattices.

In our specific model [Equation (4.1)], the energy of astatic (t = 0) vison-hole bound
state equals that of a hole without a vison. In other words, the vison does not cost any energy
if placed in a hole (while in the bulk, its energy is a finite fraction of J , see Ref. [76]). In
the limit of a small hopping amplitudet, the energy of a static excitation is split, with the
bandwidth proportional tot for the bare hole and tot

2

J
for the hole-vison bound state. As a

result, the two branches intersect each other, with the minimum of energy (the ground state)
corresponding to the hole without a vison. For somek in a region close to the boundary of
the Brillouin zone, the vison-hole bound state is lower in energy than the bare hole. In a more
general quantum dimer model (or in other RVB-type systems), however, one may imagine the
situation where the hole-vison bound state constitutes theground state (in our dimer model,
this may be achieved, for example, by adding ring exchange ofdimers around a hole). In such
a case, the doped holes spontaneously generate visons, which, in turn, may lead to further
interesting effects, e.g., the modification of the statistics of holes [81, 84].
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Appendix A.

Nonperturbative proof of the 4-fold
degeneracy of the vison branch

From perturbative arguments (see Chapter 4) one can understand that the vison-hole bound
state can only hop by two sites on a straight line. All the other processes cancel due to vison
interference effects. The vison hopping processes that connect the different sublattices cancel
each other to all orders in perturbation theory and, as a result, the vison branch is four-fold
degenerate. The perturbative argument observes that hopping between different sublattices
has always a mirror process and the closed loop in the overlapgraph necessarily contains an
odd number of sites. For such loops, one can show that the phase is always−1, hence the
interference and cancelation of the two paths.1

In this appendix, I want to show that this four-fold degeneracy of the vison branch carries
over to the non-perturbative spectrum.

We proceed by showing that the space group representation ofthe vison must be at least
4 dimensional. By symmetry of the Hamiltonian under the space-group transformations, it
follows that the 4 basis states are degenerate in energy and that the exact (non-perturbative)
spectrum has this 4-fold degeneracy.

Consider the following symmetry generators of the QDM Hamiltonian on the triangular
latticeHRK+hole [Equation (2.44)]:

T1 = translation inx-direction, (A.1a)

T2 = translation iny-direction, (A.1b)

R = rotation around the origin byπ, (A.1c)

C = time reversal. (A.1d)

1In fact, for finite systems on a torus, the four topological sectors mix due to vison motion around the torus.
Since, for a system with a single hole, the lattice must contain an odd number of sites. However, this splitting
is exponentially suppressed with system size.
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84 Nonperturbative proof of the 4-fold degeneracy of the vison branch

One can see that the space-group operations acting on a statein the vison-hole sector obey the
following commutation relations:

T1T2 = −T2T1 (A.2a)

(RTi)
2 = −1 . (A.2b)

Let |ψ1〉 be an eigenstate ofHRK+hole, T1, and(T2)
2, with

T1|ψ1〉 = eiφ1 |ψ1〉 (A.3)

and

(T2)
2|ψ1〉 = ei2φ2 |ψ1〉 . (A.4)

It is clear from (A.2a) that|ψ2〉 = T2|ψ1〉 is an eigenvector ofT2 with eigenvalue−eiφ1 :

T1|ψ2〉 = T1T2|ψ1〉 = −T2T1|ψ1〉 = −eiφ1 |ψ2〉 . (A.5)

It follows that |ψ1〉 and |ψ2〉 are linearly independent and, therefore, the translationsare at
least 2 dimensional when acting on vison states. To completethe matrix representation ofT2,
we have:T2|ψ2〉 = (T2)

2|ψ1〉 = e2iφ2 |ψ1〉.

We proceed by defining the states|ψ3〉 = RC|ψ1〉 and|ψ4〉 = T2|ψ3〉 = T2RC|ψ1〉. Using
(A.2) we can again show that these are eigenstates ofT1:

T1|ψ3〉 = T1RC|ψ1〉 = −R(T1)
−1C|ψ1〉 = −Reiφ1C|ψ1〉 = −eiφ1 |ψ3〉 (A.6)

T1|ψ4〉 = T1T2|ψ3〉 = −T2T1|ψ3〉 = eiφ1 |ψ4〉 . (A.7)

In order to show that the 4 states|ψ1〉, |ψ2〉, |ψ3〉, and|ψ4〉 are linearly independent, we
still need to prove that|ψ2〉 and|ψ3〉, and|ψ1〉 and|ψ4〉 are not proportional. We show this by
contradiction. Suppose|ψ3〉 = a|ψ2〉. It follows that|ψ1〉 = āCRT2|ψ1〉 = |a|2(RT2)

2|ψ1〉 =
−|a|2|ψ1〉, which is impossible (we have used the fact thatRT2 commutes with complex con-
jugation). The linear independence of|ψ1〉 and|ψ4〉 can be proven analogously.
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We have proven that the space-group matrix representation acting on vison states are 4
dimensional. Their explicit form is

T1 = eiφ1













1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1













, T2 = eiφ2













0 eiφ2 0 0

e−iφ2 0 0 0

0 0 0 eiφ2

0 0 e−iφ2 0













,

RC =













0 0 1 0

0 0 0 −e−2iφ2

1 0 0 0

0 −e2iφ2 0 0













. (A.8)

Since these generators are symmetries of the Hamiltonian, we have proven that the exact single
hole-vison spectrum is 4-fold degenerate on the triangularlattice.
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