(Gapless chiral) spin liquids in frustrated magnets

Samuel Bieri ITP, ETH Zürich

SB, C. Lhuillier, and L. Messio,

Phys. Rev. B 93, 094437 (2016);

SB, L. Messio, B. Bernu, and C. Lhuillier,

Phys. Rev. B 92, 060407(R) (2015).

R. G. Pereira and **SB**, in preparation.

{L. Messio, **SB**, C. Lhuillier, and B. Bernu, arXiv:1701.01253 (2017).

B. Fåk, **SB**, et al., Phys. Rev. B 95, 060402(R) (2017). }

Reviews: Balents, Nature 464, 199 (2010); Norman, RMP 88, 041002 (2016); Zhou et al., RMP 89, 025003 (2017)

Collaborations

B. Bernu

C. Lhuillier, UPMC/Sorbonne, Paris

R. G. Pereira, IIP, Natal

B. Fåk, ILL, Grenoble

P. A. Lee

M. Serbyn

T. Senthil, MIT, Cambridge MA

Outline

- Generalities on quantum (spin) liquids; RVB states
- Parton approach; projective symmetry group classification
- Kagome Heisenberg system: kapellasite
- Crossed-chains construction of a gapless chiral spin liquid
- Conclusion

Quantum liquids

• Prominent examples:

Superfluidity

Here: Liquids beyond Landau / topological order

- No breaking of (continuous, global) symmetry as T -> 0
- Absence of local order parameter

Spin systems (Mott insulators)

Phases:

- Spin gas: Independent spins point in random directions; high-T paramagnetic phase.
- **Spin solid**: Freezing of spins to a regular pattern; (anti-) ferromagnetic phase.
- Spin liquid? Interacting and fluctuating spins at low T; no ordering and no symmetry breaking

"Cooperative paramagnet"

Modern characterization: Long-range entanglement [Kitaev, Preskill; Levin, Wen 2006]

Geometric frustration

- Two Ising spins:
- Three Ising spins with antiferromagnetic interaction:

 \rightarrow Degeneracy of classical ground state.

= Нарру

Triangular Ising lattice [Wannier 1950]

• Classical Heisenberg spins:

- \rightarrow Quantum spins?
- \rightarrow More involved interactions?

 $H = JS_i^z S_j^z, \ J > 0$

Resonating valence bonds (RVB)

• Valence bond singlet: $|VB\rangle = \frac{1}{\sqrt{2}}[|\uparrow_1\downarrow_2\rangle - |\downarrow_1\uparrow_2\rangle] = \bigcirc \bigcirc \langle S_1 \cdot S_2\rangle = -3/4$

Néel:

 Anderson, Fazekas 1973/74: Quantum superposition of valence bonds may beat Néel order

- Anderson, Baskaran 1987/88: High-temperature superconductivity can naturally emerge from RVB states (under doping) [Lee, Nagaosa, Wen, RMP 78, 17 (2006)]
- Spinon excitation (spin-1/2); broken valence bond ($\Delta E = J/2$)

 $\langle \boldsymbol{S}_1 \cdot \boldsymbol{S}_2 \rangle = -1/4$

Types of valence bond states

Valence bond solid

• Liquid of "short" valence bonds

• Liquid of "long" valence bonds

- → Lattice symmetry breaking
 → Product state of valence bonds
 → No long-range entanglement
- \rightarrow No lattice symmetry breaking
- \rightarrow Long-range entangled
- \rightarrow Gapped (S=1/2) spinon excitation
- \rightarrow Spinless vortex excitation (visons)
- → Topological order; group cohomology classification [Chen, Gu, Wen 12]
- \rightarrow No lattice symmetry breaking
- \rightarrow Long-range entangled
- \rightarrow Low-energy spinon excitations
- → Algebraic/critical correlations (ASL)
- \rightarrow Refined classification more subtle

Gutzwiller/parton construction of RVB states

- A priori it is difficult to make the RVB picture quantitative
- Take simple long-range entangled state the Fermi gas: $|FS\rangle = \prod_{k \downarrow} c_{k\downarrow}^{\dagger} c_{k\uparrow}^{\dagger} |0\rangle$

$$\mathbf{P}_{\mathsf{G}} |\mathsf{FS}\rangle = q_1 |\uparrow,\downarrow,\downarrow,\uparrow,\ldots\rangle + q_2 |\downarrow,0,\uparrow,\downarrow,\ldots\rangle + q_3 |\downarrow,\uparrow,\uparrow\downarrow,\downarrow,\ldots\rangle + \ldots$$

- Projection (P_G) can efficiently be done (for Fermions) using Monte Carlo tec.
- Liquid character not destroyed by projection ?

[Zhang, Grover, Vishwanath, PRL 2011; Tao Li, EPL 2013]

- Auxiliary degree of freedom [slave particles, partons (spinons)] $C_{j\sigma}$
- Emergent local (gauge) symmetry

 \rightarrow projective symmetry group

Projective symmetry group

- How to classify RVB spin states beyond symmetry breaking?
 - Broken symmetry: Landau theory; Bragg-peaks, Anderson TOF
- X.-G. Wen: Parton classification [PRB 65, 165113 (2002)]
- Parton classification of *chiral* spin liquid states [SB et al., PRB 93, 094437 (2016)]

$$\chi = \langle \mathbf{S}_1 \cdot (\mathbf{S}_2 \times \mathbf{S}_3) \rangle \neq 0 \qquad \Rightarrow \Theta \text{ and } \sigma(2 \leftrightarrow 3) \text{ broken}$$

SR invariant: $\langle m{S}
angle \,=\, 0$

Kalmeyer and Laughlin, PRL 59, 2095 (1987). Wen, Wilczek, Zee, PRB 39, 11413 (1989). Yang, Warman, Girvin, PRL 70, 2641 (1993).

Parton construction & classification

Spin-1/2 Heisenberg model:
$$~H=~\sum_{ij}J_{ij}\,oldsymbol{S}_i\,oldsymbol{\cdot}oldsymbol{S}_j$$

(a) Fractionalize spin into spinons f_{α} , carrying $\Delta S = 1/2$ (magnons $\Delta S=1$) (f_{α} : "Abrikosov fermion" creation operator [JETP 26, 641 (1968)])

spinon doublet:
$$\boldsymbol{f} = (f_{\uparrow}, f_{\downarrow})^T$$
 $2S_a = \boldsymbol{f}^{\dagger} \sigma_a \boldsymbol{f}$ $\boldsymbol{S}^2 = \frac{3}{4}n[2-n]$

enlarged local Hilbert space:

 $\{|\uparrow\rangle, |\downarrow\rangle\} \Longrightarrow \{|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle\}$ constraint/physical subspace: $n=f^{\dagger}f \equiv 1$

gauge doublet: ${\pmb \psi} = (f_{\uparrow}, f_{\downarrow}^{\dagger})^T$

gauge transformation: $oldsymbol{\psi} \mapsto goldsymbol{\psi}, \ g \in \mathrm{SU}(2)$: leaves spin $\ S_a$ invariant

[Affleck et al, PRB 38, 745 (1988)] [Marston et al, PRB 39, 11538 (1989)] Emergent SU(2) symmetry is local: (gauge sym; ≠ spin rot!)

$$\boldsymbol{\psi} = (f_{\uparrow}, f_{\downarrow}^{\dagger})^{T}$$
$$\boldsymbol{\psi} \mapsto g \boldsymbol{\psi}, \ g \in \mathrm{SU}(2)$$

Projective symmetry group:

How can actual symmetries be represented in the spinon Hilbert space?

[X.-G. Wen, PRB 65, 165113 (2002)]

e.g., time-reversal:
$$\Theta(\psi) = \varepsilon \psi^* \xrightarrow{g_\Theta = \varepsilon^T} \psi^* \qquad \varepsilon = i\sigma_2$$

Algebraic relations among symmetries must be *respected* by the representation (up to gauge transformations) !

Parton Ansatz $H = \sum_{ij} J_{ij} S_i \cdot S_j$ $2S_a = f^{\dagger} \sigma_a f$

+ Hubbard-Stratonovich or MF decoupling

(b) Quadratic spinon Hamiltonian (= singlet "ansatz")

$$\begin{split} H_0 &= \sum_{ij} \xi_{ij} f_{i\alpha}^{\dagger} f_{j\alpha} + \Delta_{ij} f_{i\uparrow} f_{j\downarrow} + \text{h.c.} = \sum_{ij} \psi_i^{\dagger} u_{ij} \psi_j + \text{h.c.} \quad \psi = (f_{\uparrow}, f_{\downarrow}^{\dagger})^T \\ \text{Ansatz:} \quad u = \{u_{ij}\} \qquad u_{ij} = \begin{pmatrix} \xi_{ij} & \Delta_{ij} \\ \Delta_{ij}^* & -\xi_{ij}^* \end{pmatrix} \end{split}$$

Interpretations/uses of $H_0(u)$:

(i) Low-energy effective theory;

Invariant gauge group (IGG_u): U(1) [$f_j\mapsto e^{iarphi}f_j$] or \mathbb{Z}_2 [$f_j\mapsto -f_j$]

(ii) Self-consistent saddle point solutions for ${\cal H}$

(iii) Tool for constructing spin w.f. by Gutzwiller projection :

$$|\psi
angle = \prod_j n_j [2-n_j] |\psi_0\{u_{ij}\}
angle$$
 Variational Monte Carlo (VMC) method

Projective symmetry group (PSG)

1. Algebraic PSG: Representation classes of the symmetry group SG in the gauge group $\mathcal{G}=\{g\}, g=\otimes g_j, g_j \in \mathrm{SU}(2)$

Equivalence of reps: $Q: \mathrm{SG} \to \mathcal{G}$ $x \mapsto g_x$ $Q^1 \sim Q^2 \iff \exists q \in \mathcal{G} \text{ s.t. } Q^1 = gQ^2g^{\dagger}$

Algebraic relations in SG respected up to the IGG, e.g.: reflection $\sigma^2 = 1 \implies g_{\sigma}(\mathbf{r})g_{\sigma}(\sigma\mathbf{r}) \in \text{IGG} \{\pm 1\}$

IGG: Invariant Gauge Group (subgrp of G) (here: \mathbb{Z}_2 classification)

2. Invariant PSG: Ansatz U respecting SG for each PSG class

action of symmetry x on Ansatz: $Q_x(u_{ij}) = (-)^{\tau_x} g_x(i) u_{x^{-1}(ij)} [g_x(j)]^{\dagger}$

 $Q_x(u) = u$ for all x in SG

PSG: Kagome lattice

Symmetries:
$$SG_{\tau_{\sigma},\tau_{R}} = \{T_{\hat{x}}, T_{\hat{y}}, \sigma\Theta^{\tau_{\sigma}}, R\Theta^{\tau_{R}}\}\$$

 $\tau_{R} = 0, \tau_{\sigma} = 0$: Symmetric QSL
 $\tau_{R} = 0, \tau_{\sigma} = 1$: "Kalmeyer-Laughlin" CSL
 $\tau_{R} = 1$: Staggered-flux CSL

$$g_x = \mathbb{1}_2$$

$$g_y = (\epsilon_2)^x \mathbb{1}_2$$

$$g_\sigma(x, y) = (\epsilon_2)^{xy} g_\sigma$$

$$g_R(x, y) = (\epsilon_2)^{xy+y(y+1)/2} g_R$$

$$\epsilon_2 = \pm 1$$

r	10.	g_{σ}	g_R	ϵ_{σ}	$\epsilon_{R\sigma}$	ϵ_R	sym
	1	$\mathbb{1}_2$	$\mathbb{1}_2$	+	+	+	SU(2)
	2	$i\sigma_{\!3}$	$\mathbb{1}_2$	_	_	+	U(1)
	3	$\mathbb{1}_2$	$i\sigma_{\!3}$	+	_		U(1)
	4	$i\sigma_3$	$i\sigma_3$	_	+	_	U(1)
	5	$i\sigma_2$	$i\sigma_3$	_	_		\mathbb{Z}_2

SB et al., Phys. Rev. B 92, 060407(R) (2015)
SB, C. Lhuillier, and L. Messio, Phys. Rev. B 93, 094437 (2016).

10 PSG classes on kagome

Material: kapellasite [ZnCu₃(OH)₆Cl₂]

- No ordering down to mK, gapless continuum of spin excitations
- Weak ferro Curie-Weiss temp $\Theta_{CW} \simeq 9 \text{ K}$
- Farther-neighbor Heisenberg exchange: $J_1 \sim -12$ K, $J_2 \sim -4$ K, $J_d \sim 16$ K
- Powder samples

- R. H. Colman et al, C.M. 20, 6897 (2008); 22, 5774 (2010).
- O. Janson at al, PRL 101, 106403 (2008).
- H. O. Jeschke et al, PRB 88, 075106 (2013).
- E. Kermarrec et al, PRB 90, 205103 (2014).

B. Fåk et al, PRL 109, 037208 (2012).B. Bernu et al, PRB 87, 155107 (2013).

$$H = J_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_d \sum_{\langle \langle i,j \rangle \rangle_d} \mathbf{S}_i \cdot \mathbf{S}_j$$

Experimental evidence for a gapless quantum spin liquid

Classical J_1 - J_2 - J_d kagome Heisenberg model

 $|J_1| + |J_2| + J_d = 1$ $J_1 < 0, J_2 < 0, J_d > 0$

L. Messio et al., PRB 83, 184401 (2011).

cuboc-1,-2: non-planar Néel order with $\chi = S_1 \cdot (S_2 \times S_3) \neq 0$ 12 site unit cell

Spontaneous breaking of timereversal, (up to) lattice reflection and rotation

What happens in the case of quantum spin S=1/2? Is the elusive chiral spin liquid realized in kapellasite?

Kalmeyer and Laughlin, PRL 59, 2095 (1987).

Wen, Wilczek, Zee, PRB 39, 11413 (1989).

Yang, Warman, Girvin, PRL 70, 2641 (1993).

Quantum phase diagram - VMC $|J_1| + |J_2| + J_d = 1$ criboci2 cuboc-1 SB et al., PRB 92, 060407 (2015) DVIRG by Gong et al, PRB 2016 AF chain [3×~3 0.5 0.2 CSLA 0.8 VBC × CSL B cuboc1 0.4 kapellasite ferro 0.4 haydeeite 0.6 0.3 2 |J₂|/J_d 0 cuboc2 0.2 cuboc-2 0.4 0.1 0.8 0.2 0.0 0.0 0.2 0.3 0.6 0.7 0.8 0.1 0.4 0.5 rerrc |J₁|/J_d 0.4 J₂ 0.2 × 0.8 0.6 Spin model:

 $H = J_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_d \sum_{\langle i,j \rangle_d} \mathbf{S}_i \cdot \mathbf{S}_j \quad \text{with} \\ J_1 < 0, \ J_2 < 0, \ J_d > 0$

Iqbal, Valenti, Greiter, Thomale, et al, PRB 2015 Gong, Zhu, Yang, Starykh, Sheng, Balents, PRB 2016: DMRG → ordered phases

R. G. Pereira and SB, in preparation; Gong, Balents, et al, PRB 2016.

Kalmayer-Laughlin CSLsNeupert, Chamon, Mudry, Thomale, PRB (2014)from wire construction:Meng et al, PRB 241106 (2015)Lecheminant, Tsvelik, arXiv:1608.05977

$$\mathbf{S}_{q}(j,l) \sim a_{\parallel}[\mathbf{J}_{Lq}(x,l) + \mathbf{J}_{Rq}(x,l) + (-1)^{j}\mathbf{n}_{q}(x,l)]$$
$$q \in \{\text{red,green,blue}\} = \{1,2,3\}$$

Dimerization op: $(-)^{j}\mathbf{S}_{q}(j,l)\cdot\mathbf{S}_{q}(j+1,l) \sim \varepsilon_{q}(x,l)$

$$H_0 \sim \sum_{q,l} \frac{2\pi v}{3} \int dx [\mathbf{J}_{qL}^2(x,l) + \mathbf{J}_{qR}^2(x,l)] \quad v = \pi J_d a$$

Transverse direction: even/odd fields $n_q(j,l) \ \sim \ n_q^e(j,y) + (-)^l n_q^o(j,y)$

$$H'_n \sim (J_2 - J_1) \int d^2x \, \mathbf{n}_q^o(-x, y) \cdot \mathbf{n}_{q+1}^e(x+y, x)$$

 \rightarrow nonplanar magnetic order (cuboc)

$$H'_{\varepsilon} \sim J_1 J_2 \int d^2 x \, \varepsilon_q^o(-x, y) \varepsilon_{q+1}^e(x+y, x)$$

$$\rightarrow \text{valence-bond-crystal}$$

Crossed-chains model

[Sen and Chitra, PRB 1995] [Bauer, Trebst, Ludwig, et al, Nat. Com. 2014; arXiv:1302.6963] [Wieteck, Läuchli, PRB 2017]

[Gorohovsky, Pereira, Sela, PRB 2015]

R. G. Pereira and SB, in preparation

$$J_1 = J_2 \qquad |J_1|, J_\chi \ll J_d$$

 \rightarrow Small triangles: Only generates

Add chiral threesite interaction: $H_{\chi} = J_{\chi}$

$$H_{\chi} = J_{\chi} \sum_{ijk \in \Delta} \mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k)$$

 $\delta H \sim \mathbf{J}_{1R} \cdot (\mathbf{J}_{2R} \times \mathbf{J}_{3R})$

 $J_1 - J_2 - J_d$ -triangles: two sites belong to the same chain \rightarrow marginal coupling.

→ Breaks time reversal and reflection $\tilde{\sigma}$; preserves σ along the chains; Rotation C₆ broken down to C₃.

 $\delta H \sim (J_1 \mp J_{\chi}) \int d^2 x \, \mathbf{J}^e_{q,L/R}(-x,y) \cdot \mathbf{J}^e_{q+1,L/R}(x+y,x)$

Crossed-chains model

$$\begin{split} \delta H &= \sum_{j} \mathcal{H}_{j} \\ \mathcal{H}_{1}(x,y) &= 2\pi v \lambda_{1} \alpha^{-1} \varepsilon_{q}^{o}(-x,y) \varepsilon_{q+1}^{e}(x+y,x) \\ \mathcal{H}_{2}(x,y) &= 2\pi v \lambda_{2} \alpha^{-1} \mathbf{n}_{q}^{o}(-x,y) \cdot \mathbf{n}_{q+1}^{e}(x+y,x) \\ \mathcal{H}_{3}(x,y) &= 2\pi v \lambda_{3} \mathbf{J}_{qL}^{e}(x,y) \cdot \mathbf{J}_{qR}^{e}(x,y) \\ \mathcal{H}_{4}(x,y) &= 2\pi v \lambda_{4} \mathbf{J}_{qL}^{o}(x,y) \cdot \mathbf{J}_{qR}^{o}(x,y) \\ \mathcal{H}_{5}(x,y) &= 2\pi v \lambda_{5} \mathbf{J}_{qL}^{e}(-x,y) \cdot \mathbf{J}_{q+1,L}^{e}(x+y,x) \\ \mathcal{H}_{6}(x,y) &= 2\pi v \lambda_{6} \mathbf{J}_{qR}^{e}(-x,y) \cdot \mathbf{J}_{q+1,R}^{e}(x+y,x) \\ \mathcal{H}_{7}(x,y) &= 2\pi v \lambda_{7} \mathbf{J}_{qL}^{e}(-x,y) \cdot \mathbf{J}_{q+1,R}^{e}(x+y,x) \\ \mathcal{H}_{8}(x,y) &= 2\pi v \lambda_{8} \mathbf{J}_{qR}^{e}(-x,y) \cdot \mathbf{J}_{q+1,L}^{e}(x+y,x) \\ \lambda_{5,6}^{0} \sim (J_{1} \mp J_{\chi}) \end{split}$$

Identify running λ_j that reaches strong coupling **first** in the RG flow:

 $\lambda_6 \mathbf{J}_{qR}(-x, y) \cdot \mathbf{J}_{q+1,R}(x+y, x) \sim \cos\{\sqrt{4\pi}[\varphi_{qR}(-x, y) - \varphi_{q+1,R}(x+y, x)]\}$

ightarrow R boson gap $\sim v/lpha^*$ in all chains, L remain gapless

Physical properties:

- Gapless chiral bulk spin currents
- Vanishing thermal Hall response
- Linear-T specific heat
- Stable to weak disorder (irrelevant)
- Power-law spin-spin correlations: $\langle \mathbf{S}_q(x,y) \cdot \mathbf{S}_q(x+r,y) \rangle \sim -r^{-2}$
- Area law entanglement entropy: $S_A(\ell) \sim c_L \ell \log(\ell)$

→ Spinon/parton Fermi surface?

Crossed-chains model: parton construction

Complex Fermionic parton theory - PSG : [SB et al, PRB 2016]

$$\tau_{\sigma} = 0, \, \tau_{R} = 1; \, \epsilon_{2} = 1, \, g_{\sigma} = g_{R} = \mathbb{1}_{2}$$

 $t_{1} = i, t_{2} = 1, t_{d} = i$

Similarly: Majorana fermion fractionalization

[Kitaev, Ann. Phys. 2006] [Biswas, Fu, Laumann, Sachdev, PRB 2011]

Conclusion & outlook

- RVB states, parton construction, PSG classification
- Exhaustive list of fermonic parton CSLs (kagome, triangular)
- Exotic phases in a S=1/2 kagome system (kapellasite)
- Crossed-chains construction for dominant Jd
- Outlook:
 - Spin-orbit coupled models, DM interation
 - Microscopic properties of parton states
 - PSG og nonsymorphic/higher-D space groups
 - Can we marry fRG with parton PSG?

Thank you!

Herbertsmithite [ZnCu₃(OH)₆Cl₂]

- No ordering down to mK, gapless/gapped (?) spin excitations
- Strong AF Curie-Weiss, dominant $J_1 = J \sim 200 \text{ K}$; $J_2 = J_d = 0$
- Single crystals [Young Lee (MIT), now also France (Ph. Mendels)]
- Perturbations; e.g. Dzialoshinskii-Moriya: $D_z \approx 0.8 \text{ J}$

- T.-H. Han et al, Nature 492, 406 (2012).
- A. Zorko et al, PRL 118, 017202 (2017).
- A. Zorko et al, PRL 101, 026405 (2008).

- I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).T. Moriya, PRL 4, 228 (1960).
- L. Shekhtman et al, PRL 69, 836 (1992).

Spin-orbit coupling/Dzyaloshinskii-Moriya (DM) Interaction:

$$H = J \sum_{\langle i,j \rangle} h_{ij} \qquad h_{ij} = \mathbf{S}'_i \cdot \mathbf{S}'_j \qquad \mathbf{S}'_i = \mathbf{S}_i \text{ rotated by } -\theta_{ij} \text{ around } \hat{d}_{ij}$$
$$\mathbf{S}'_j = \mathbf{S}_j \text{ rotated by } +\theta_{ij} \text{ around } \hat{d}_{ij}$$

Schwinger-boson mean-field theory (for DM)

L. Messio, SB, et al, arXiv:1701.01253

(a) Fractionalize spin into bosonic $\Delta S = 1/2$ spinons b_{α}

(b_{α} : "Schwinger boson" creation operator)

$$2S_a = \boldsymbol{b}^{\dagger} \sigma_a \boldsymbol{b} \qquad \qquad \boldsymbol{b} = (b_{\uparrow}, b_{\downarrow})^T$$

 $\boldsymbol{S}^2 = \frac{1}{4}n(2+n)$

enlarged local Hilbert space: $\{|\uparrow\rangle, |\downarrow\rangle\} \Longrightarrow \{|0\rangle, |1,0\rangle, |0,1\rangle, |1,1\rangle, \ldots\}$ emergent gauge symmetry: $\boldsymbol{b} \mapsto g\boldsymbol{b}$, $g \in \mathrm{U}(1)$

 $h_{ij} = :B_{ij}^{\dagger}B_{ij}: -A_{ij}^{\dagger}A_{ij}$

constraint/physical subspace:

$$n = \mathbf{b}^{\dagger} \mathbf{b} \equiv 2S$$

R

 \hat{x}

Quadratic spinon theories:

$$A_{ij} = e^{-i\theta_{ij}} b_{i\uparrow} b_{j\downarrow} - e^{i\theta_{ij}} b_{i\downarrow} b_{j\uparrow}$$
$$B_{ij} = e^{i\theta_{ij}} b_{i\uparrow}^{\dagger} b_{j\uparrow} - e^{-i\theta_{ij}} b_{i\downarrow}^{\dagger} b_{j\downarrow}$$
$$\implies h_{ij}^{\text{MF}} = \mathcal{B}_{ij}^* B_{ij} - \mathcal{A}_{ij}^* A_{ij} + \text{h.c.}$$

(b) PSG classification of MF states:L. Messio et al, PRB 83, 184402 (2011).

Self-consistent solutions

$S(\boldsymbol{q},\omega)$ in new CSL phase $A_4(0,1)$

L. Messio, SB, C. Lhuillier, B. Bernu, arXiv:1701.01253

A₄(1,1) phase: L. Messio et al, PRL 108, 207204 (2012)

 ω/J

 $\omega = 0 - 0.15J$

 $\omega = 0.3 - 0.45 J$

week ending 4 NOVEMBER 2011

High-Pressure Sequence of $Ba_3 NiSb_2O_9$ Structural Phases: New S = 1 Quantum Spin Liquids Based on Ni²⁺

J. G. Cheng,¹ G. Li, ² L. Balicas, ² J. S. Zhou,¹ J. B. Goodenough,¹ Cenke Xu,³ and H. D. Zhou^{2,*}

6H-A

6H-B

3C

Conclusion & outlook

- PSG classification for QSLs
- Exhaustive list of fermonic parton CSLs (kagome, triangular)
- Quasi-1D phase in a S=1/2 kagome system (kapellasite)
- New CSL in kagome Heisenbg. model with DM term (herbertsmithite)
- Evidence for spinon Fermi surface in S=1 triangular QSL (B-BaNiSbO)
- Outlook:
 - Fermionic approach to Dzyaloshinskii-Moriya
 - Ring exchange, honeycomb
 - 3D lattices (hyperkagome, ...)

Thank you!

Characterization: Spinon spectrum; Spin structure factor

E.g. spinon Fermi surface (note: This is a Mott insulator!)

 $S \sim \langle \boldsymbol{S}_i \cdot \boldsymbol{S}_j \rangle$ $S(\boldsymbol{q}) \sim |\boldsymbol{q}|^{\alpha}$, as $|\boldsymbol{q}| \rightarrow 0$ ("algebraic SL") $S(\boldsymbol{q}, \omega \sim 0)$ features at $\boldsymbol{q} \sim 2\boldsymbol{k}_F$

