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Résumé

Dans ce travail de diplôme nous étudions un soliton dans le contexte
de la théorie des champs quantiques. Le modèle considéré est le modèle
σ non-linéaire à symétrie O(3) en 3 dimensions avec un terme de masse
qui brise la symétrie. La propriété de stabilité du soliton “hérisson”
circulairement symétrique avec indice topologique 1 est analysée clas-
siquement ainsi que par les méthodes de la mécanique quantique. En
ce qui concerne la théorie des champs classique, un code numérique qui
intègre les équations différentielles aux dérivées partielles du problème
a été développé. Le résultat nous montre que le soliton se rétrécit à
une configuration singulière de champ et ceci dans un temps fini. L’ap-
proche de la mécanique quantique utilise la méthode des coordonnées
collectives dans une variable de dilatation. Il s’avère que le soliton, qui
est classiquement instable, est stabilisé par des effets quantiques. Le
spectre d’énergie est celui d’un oscillateur harmonique. Si les conclu-
sions sont correctes et si les “solitons quantiques” existent, ceci pour-
rait avoir des applications intéressantes et nouvelles en cosmologie.

Abstract

In this diploma work we discuss a soliton in the context of quantum
field theory. The model considered is the O(3) nonlinear σ-model in 3
dimensions with a symmetry breaking mass term. The stability prop-
erties of the circularly symmetric “hedgehog” soliton with topological
number 1 is analyzed both classically and quantum mechanically. As
far as classical field mechanics is concerned, a numerical code has
been developed which integrates the partial differential equation of
the problem. The result is that the soliton shrinks to a singular field
configuration in finite time. The quantum mechanical calculations
use the collective coordinate approach in a dilatation variable. The
classically instable soliton is found to be stabilized through quantum
effects. The spectrum of the quantum soliton is that of a harmonic
oscillator. If the conclusions are correct and “quantum solitons” exist,
this could have interesting and novel applications in cosmology.
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1 Introduction

The soliton was discovered more than 150 years ago by John Scott Russel.
The Scottish engineer described for the first time a peculiar phenomenon
he had observed in the canals of Edinburgh: a wave that does not change
its shape while propagating. The importance of Russel’s observation was
only recognized years after his death by the scientific community. Mathe-
maticians found examples of nonlinear differential equation which have non-
dispersive solutions, they were finally identified with what Scott Russel had
called “solitary waves”. Today, solitons are of great importance not only to
mathematics, but also to applied sciences and engineering. Be it hydrody-
namics, optics, electrical engineering, condensed matter, elementary particle
and nuclear physics or cosmology, there is an impressive number of applica-
tions in various fields.

In the present work, a specific soliton is discussed in the context of ele-
mentary particle physics. Quantum field theory is the framework which is
believed to govern the basic building blocks of nature. Solitons in quantum
field theory are interpreted as extended particles, opposed to the ordinary,
point-like particles. The soliton discussed here turns out to decay into a
singular field configuration from the point of view of classical mechanics.
However, classical instability does not necessarily mean physical decay. In
physics, there are numerous examples of classically unstable configurations.
For example the hydrogen atom cannot exist according to classical physics:
an electron orbiting a charged nucleus will radiate its energy away and finally
fall on top of the nucleus. However, quantum effects prevent this to happen.
We conjecture that the same mechanism will stabilize our soliton. We apply
a collective coordinate quantization to our model. And indeed, we find a
quantum stabilized soliton.

This work is organized in the following way: In the second part of this
section, we will give a brief introduction to solitons and some general infor-
mation about nonlinear σ-models. The purpose is to sketch the background
and the applications of this family of models. It is thought to address non-
specialists in this field. In section 2, we present a classical analysis of our
model, considering first the massless and then the massive case. In the third
section we expose a quantization procedure and we show that the classically
unstable soliton can be stabilized by quantum mechanics. In a series of ap-
pendices we give supplementary information on the methods used and show
important theorems.

1



1.1 Some background information

In this section I want to give some general motivation on the subject. The
intention is to put the investigations of this work into a slightly larger context.

1.1.1 What is a soliton ?

This work is about a soliton. I want to give here a very brief introduction to
solitons in field theory. The intuitive approach is sufficient for our purpose.
For a more concise introduction see Rajaraman [1]. For review of the history
and applications of solitons see [2].

Let us for simplicity take the case of a scalar field φ(x, t). Suppose fur-
thermore that the physical quantity energy density ε = ε(φ, ∂tφ, ∂xφ) can be
associated to the field. For a field configuration to make physical sense, its
total energy should stay finite and bound from below:

E(t) =

∫

space

ε(φ(x, t))dx

0 ≤ E(t) < ∞, ∀t
(1.1)

The evolution of φ is given by a partial differential equation (PDE), derived
from minimization of some action functional of the field S[φ] =

∫
dt L[φ, t]:

δS[φ]

δφ
= 0 (1.2)

A solitary wave is a nonsingular solution of this differential equation with
localized energy density. More precisely

ε(x, t) = f(x− vt) < ∞
f(ξ) → 0 as |ξ| → ∞ (1.3)

In other words, a solitary wave is a “lump of energy” which moves undistorted
in shape.

Let ε0(x, t) be the energy density of a solitary wave. It is a soliton if the
equation of motion admits solutions with energy densities of the following
form:

ε(x, t) →
N∑

i=1

ε0(x− ai − vit) as t → −∞

ε(x, t) →
N∑

i=1

ε0(x− bi − vit) as t → +∞
(1.4)
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where ai, bi and vi are constants. In other words, a solitary wave is a soliton
if the equation of motion admits widely separated multiple solitary waves
which asymptotically restore their shape and velocity after collision.1

It is most interesting that solitary waves even exist for nonlinear equa-
tions. An example of a linear equation without dispersion is

(∂2
t − ∂2

x)φ(x, t) = 0 (1.5)

It has the solution φ(x, t) = sin(k(x − t)) for any k ∈ R. Due to linearity,
we can construct localized wave packets which are clearly solitons. These
solitons are uninteresting in our context, precisely because there is a linear
superposition principle. Physically speaking, the solitons do not interact
with each other in this model.

However, as soon as the equation gets slightly more complicated, it is
more difficult to find solitons. Take for example the relativistic Klein-Gordon
equation:

(∂2
t − ∂2

x − 1)φ(x, t) = 0 (1.6)

A solution is given by φ(x, t) = sin(k(x− v(k)t))) with v(k) =
√

1 + k2/k for
any k ∈ R. We can still construct localized wave packets, but the different
waves move with different velocities. The packet spreads with time. Equation
(1.6) is said to have dispersion.

Non-trivial equations which have soliton solutions must necessarily be
nonlinear. In a sense, the nonlinear effects and the dispersion may cancel
and a stable solitary wave results. As a last example let me give the so-
called “Sine-Gordon” equation:

(∂2
t − ∂2

x)φ− λ−1 sin(λφ) = 0 (1.7)

where λ is a real parameter. This equation has solitary waves given by
φ(x, t) = λ−14 arctan(ex) and it even admits soliton solutions which scatter
and restore their shape afterwards.

A very general feature of solitons is that they are non-perturbative. As
we see in our example of the Sine-Gordon equation, there is the parameter λ
which determines somehow the degree of nonlinearity of the equation. If λ is
sufficiently small, we could try expand the sine in (1.7) and we arrive at the
linear Klein-Gordon equation (1.6) to order λ2. It is interesting to see what

1These definitions are adopted from [1]. They ban in fact the majority of known finite
energy solutions from the list of solitons. However, it is common in the literature to call
all solitary waves solitons and I will adopt this practice after the introduction. It is still
worth knowing the difference as it allows one to be more precise when desired.
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happens to our soliton in this limit: it diverges. This is a observation which
is true for all non-trivial solitons: they are not seen by perturbation theory.
This is of crucial importance to quantum field theory, where perturbation
theory is often the only tool available.

I have used the term classical stability. Let me define it more precisely:
Let φc(x, t) be a solitary solution of a field theory. Consider the perturbed
field φ(x, t) = φc(x, t) + η(x)eiωt, where η is small and subject to the bound-
ary condition η → 0 as |x| → ∞. We can now write a linearized equation
of motion for η(x). A solitary solution is called classically stable if this lin-
earized equation has only solutions for real ω. This simply means that the
solution should be stable in the sense that small perturbations do not grow
exponentially in time.

One last remark concerns the physical interpretation of soliton solutions
discussed so far. In quantum field theory, classically stable solitary waves are
interpreted as extended particles (“classical lumps” Coleman [3], as opposed
to point-like particles). If the model admits multi-solitary solutions or even
solitons, these solutions are then interpreted as a system of interacting par-
ticles. Solitons are treated like classical objects, and physical quantities like
energy etc. are calculated in a semi-classical approach [4, 5, 6, 1]. Form this
point of view, classical stability is an essential requirement: the procedure of
quantization introduces small perturbations to the solutions and they need
to be classically stable in order to perform quantization consistently.

However, if the soliton is classically unstable there is no general method
to treat it. It has been proposed by some authors that quantum effects can
stabilize the soliton and give rise to so called “quantum solitons”. I will
discuss this possibility in detail in section 3.

1.1.2 Nonlinear σ-models

The non-linear σ-model I am considering in this work is defined by the fol-
lowing action:1

S = g

∫
d3x

1

2
∂µφa∂

µφa −m2(1− φ3) , φaφa = 1, a = 1 . . . 3 (1.8)

where g and m are real parameters. More eloquently, φ(x, t) is a 3-component
real scalar field in two space and one time dimensions. φ is furthermore

1The notation is explained in section 1.2.

4



constrained to live on a sphere S2 with radius 1. In general, a nonlinear σ-
model is a scalar field theory of which the target space1 is a curved manifold.
The model (1.8) is called O(3) model, because its target manifold is invariant
under O(3) rotations of the field φ. It is called broken because the m2 term
breaks this rotational invariance of the action.

Figure 1.1: Target space of a simple non-linear σ-model, the one considered here.

Figure 1.2: Target space of a more complicated non-linear σ-model.

1The target space is the space where φ lives.
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A very important nonlinear σ-model in nuclear and subnuclear physics is
the Skyrme model [7, 8]. Its target manifold is U(3) or more generally U(N)
which is a matrix space and not as easily visualized as our O(3) model.
The Skyrme model is believed to be an effective action for quantum chro-
modynamics (QCD), i.e. a low energy description of quark dynamics. One
difficulty of QCD is that there are no small parameters to do a perturba-
tional expansion. However, it was suggested by ’t Hooft and then by Witten
[9, 10] to expand the theory in the inverse of the number of colors, 1/Nc. In
this language, a baryon1 which is composed out of Nc quarks, sees his mass
grow with the expansion parameter 1/Nc. We have seen before that this is a
typical feature of a soliton. This and other theoretical reasons led to exten-
sive search for the effective theory of QCD, possessing soliton solutions which
could be interpreted as baryons. The Skyrme model is such a candidate, its
solitons are called skyrmions. In this context, similar models to our O(3)
model are discussed in the literature as a simplified versions of the Skyrme
model, their solitons are generally called baby skyrmions [11].

Another field of research where nonlinear σ-model find application is con-
densed matter physics. There, the spin of atoms on a lattice is considered.
In the continuum limit, such a model is an O(3) nonlinear σ-model. This
approach is very important for the description and understanding of supra-
conductivity and antiferromagnets [12, 13].

Solitons find also applications in cosmology. Among others, the pressing
questions of this field of research are the cosmological constant (hierarchy)
problem or the puzzle of dark matter. In this context, there has been consid-
erable interest in the study of extra dimensions and the brane world scenario
in recent years (see e.g. [14] and references therein). One idea is that our
4 dimensional world is in fact the interior of a domain wall. This domain
wall could be formed by a soliton living in higher dimensions. Other types
of solitons in cosmology are superconducting cosmic strings or vortons [15].

1Proton, Neutron etc.
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1.2 Notational conventions

In this work I will use the so-called “Einstein sum convention” about indices,
i.e. repeated Greek indices are summed over from 0 to 2 and Arab indices
from 1 to 3, i.e

∂µφa∂
µφa ≡

3∑
a=1

2∑
µ=0

∂µφa∂
µφa

The metric is taken to be gµν ≡ diag(1,−1,−1). Thus,

xνx
ν = gµνxµxν = x2

0 − x2
1 − x2

2

Bold symbols are considered to be N component quantities with Arab indices,
e.g.

x = (x1, x2)

or
φ = (φ1, φ2, φ3)

The symbol · is used as the euclidian scalar product:

x2 ≡ x · x ≡ xaxa

The symbol ∧ is used as the wedge product:

(φ ∧ φ)a = εabcφbφc

ε is the completely antisymmetric tensor with 2 or 3 indices: ε123 = 1 and
ε12 = 1.

If not otherwise stated, we use natural units where ~ = c = 1. The energy is
given in GeV .

ḟ = df
dt

, f ′ = df
dr

where r =
√

x2
1 + x2

2.

1.3 Acknowledgements

I am particularly indebted to my advisor Professor M. Shaposhnikov for his
steady support and advice during my work on this subject. I also thank
M. Bruderer and P. Tinyakov for helpful discussions. I am grateful to
E. Roessl for proofreading and criticizing this manuscript after its comple-
tion.

7





2 Classical discussion of the model

As we already stated in the introduction, the action of our model is given
by:

S = g

∫
d3x

1

2
∂µφa∂

µφa −m2(1− φ3) , φaφa = 1, a = 1 . . . 3 (2.1)

The energy functional corresponding to this action is:

H[φ] = g

∫
d2x

1

2
( (∂tφa)

2 + (∇φa)
2) + m2(1− φ3) (2.2)

The field φ is dimensionless, g and m are parameters with dimension of
energy.

In the case m2 = 0, the action (2.1) has O(3) symmetry, i.e. we can rotate
φ without changing the action. In the language of QFT, this symmetry
is spontaneously broken to U(1) by the choice of a vacuum value φvac. If
m2 6= 0, this symmetry is broken explicitly and the vacuum is φvac = (0, 0, 1).

2.1 Topological charge

Without even looking at the equations of motion, we can readily classify
the possible finite energy solutions by a topological argument. Due to the
potential term m2 in (2.2), a finite energy field configuration has to go to the
vacuum at infinity:

φ(x, t) → (0, 0, 1) as |x| → ∞, ∀t (2.3)

The physical space where x takes values is thus undistinguishable at infinity.
In other words, the original space R2 on which φ is defined is reduced to
R2 with all “points” at spatial infinity identified. This space is topologically
equivalent to a sphere S2

phys. On the other hand, the internal (target) space
is the sphere S2

int by definition. As a consequence, a field φ respecting the
boundary condition is a map φ : S2

phys → S2
int, element of the second ho-

motopy classes π2(S
2
int) ≡ Z. It is thus characterized by an integer winding

number n. The homotopy or topological index of a field configuration φ in
a class n can be written explicitly as:1

n =
1

8π

∫

S2
phys

d2x εabcεij φa∂iφb∂jφc (2.4)

1For the critical reader this is explained in more detail in appendix A.
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At this point it is important to note that (2.4) is conserved for any smooth
transformation of the fields, in particular during time evolution. This state-
ment is true for classical field theory and as long as the time evolution does
not run into a singular field configuration. We will see later that this can
happen in our model.

2.2 A lower bound on the energy

Still without using the equations of motion, we can show that the energy is
bound from below for nonsingular fields. Consider the quantity

F a±
i = ∂iφa ± εabcεij φb∂jφc (2.5)

then, clearly

0 ≤ F a±
i F a±

i = 2 ∂iφa∂iφa ∓ 2 εabcεij φa∂iφb∂jφc (2.6)

or, equivalently

∂iφa∂iφa ≥ ±εabcεij φa∂iφb∂jφc (2.7)

where we have used φ · ∂iφ = 0. If we integrate (2.7) over S2
phys, we see

the “gradient” term of the energy (2.2) appearing on the left hand side and
the topological index on the right hand side. Kinetic (∂tφ

2) and potential
(m2 . . .) terms in the energy functional are positive definite. This allows us
to set the following lower bound on the total energy:

H[φ] ≥ 4πg|n| (2.8)

where φ has topological winding number n. This inequality was discovered
by Belavin and Polyakov [12]. Similar bounds can be found in topological
considerations of gauge theories and monopoles (see, e.g. [1]).

2.3 Equations of motion

The classical equations of motion for the fields φa can be derived using a
Lagrange multiplier field λ(x, t) to impose the constraint, and then by varying
the action with respect to λ, and φa. This is done in [1, 16]. However, it seems
more convenient here to resolve the constraint directly with the following
substitution:

φ =




sin f cos h
sin f sin h

cos f


 (2.9)
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where f(x, t) and h(x, t) are the new, unconstraint fields. They are simply
the polar coordinates in internal space. The requirement of finite energy
(2.3) imposes

f(x, t) → 2πN as |x| → ∞ (2.10)

where N is an integer. However, these vacua are equivalent (i.e. they corre-
spond to the same field φ) and we can set N = 0.

In this language, the action (2.1) is given by

S = g

∫
dt d2x

1

2
(∂µf)2 +

1

2
(∂µh)2 sin2 f −m2(1− cos f) (2.11)

The residual U(1) symmetry is h → h + α and the corresponding Noether
current is:

jµ = ∂µh sin2 f (2.12)

The topological charge (2.4) is

n =
1

4π

∫
dx2 εij ∂jh ∂i(cos f) (2.13)

It is interesting to write (2.13) in polar coordinates (r, θ). Let us choose
the origin x0 in such a way that sin(f(x0)) vanishes. We can then have
non-trivial dependency h(θ). After some integrations by parts, we get

n =
1

4π

∫
dr h(r, θ) ∂r(cos f)|θ+2π

θ (2.14)

Jumps of 2π are allowed for f and h. We thus have h(r, θ) − h(r, θ +
2π) = 2πM(r), M(r) integer, and (cos f)|θ+2π

θ = 0. We can now perform
the integration and get

n = −M(∞) cos f |r=∞r=0 /2 = M(∞)(cos f(r = 0)− 1)/2 (2.15)

The important point here is that we have to start with f(r = 0) = π in order
to obtain solutions with nontrivial topology. If this is fulfilled, the actual
winding number n does only depend on the behavior of h. Hence, we can
suppose that f goes continuously from π to 0 as r increases and that it stays
in this interval.

Let us finally write the equations of motion:

∂µ∂
µf − sin 2f

2
(∂µh)2 −m2 sin f = 0 (2.16a)

∂µ(∂µh sin2 f) = 0 (2.16b)

Equation (2.16b) is simply the conservation equation for the current (2.12).
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2.4 Massless case

The model with m2 = 0 has static solitary solutions which are discussed in
the literature in various contexts. I will consider only the special case of
static, circularly symmetric solutions. The method for finding more general
solutions is discussed in appendix B.

Consider the case of fields of the form f = f(r) and h = h(θ, t). r and
θ are polar coordinates. This is sometimes called the hedgehog ansatz. The
equation of motion (2.16b) and the periodicity of h implies

h(θ) = −n θ + θ0 + ωt (2.17)

where n is an integer. (2.16) writes

f ′′ +
1

r
f ′ − sin 2f

2

(
n2

r2
− ω2

)
= 0 (2.18)

In the following, we will only consider the case of a non-rotating soliton, i.e.
we set ω = 0. In this case (2.18) has an analytic solution:

f(r) = 2 arctan[

(
λ

r

)n

] (2.19)

where λ is an arbitrary constant. Other possible constants are fixed by the
requirement f → 0 as r → ∞ and f(r = 0) = π. With this convention, the
winding number (2.14) is exactly the n used here.

The energy densities of our hedgehog solutions are given by:

T 00 = g
(f ′2

2
+

sin2 f

2r2

)
= g

4 n2
(

λ
r

)2 n

r2
(
1 +

(
λ
r

)2 n
)2 (2.20)

The energy densities of the solitons n = 1 and n = 2 are plotted in figure 2.1.
The unit charge soliton has its energy density centered at the origin. Higher
charged solutions form a ring around the origin. It is clear that the parameter
λ measures the spatial extension of the soliton, we will thus call it the size.

In the following discussion, we will restrict ourself to the n = 1 solution.

2.4.1 Classical stability

Having found a static solution with n = 1, we should now examine its classical
stability. To do this we apply a small radial perturbation to it (we will set
θ0 = 0 from now on):

f(r, t) = 2 arctan
λ

r
+ ηω(r)eiωt (2.21a)

h(θ) = −θ (2.21b)
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Figure 2.1: Radial energy density of the static n = 1 and n = 2 hedgehog solutions.

We put this into the equation of motion (2.16) and linearize for small η:

[−∂2
r −

1

r
∂r +

1

r2
(1− 8(λ/r)2

(1 + (λ/r)2)2
)− ω2]ηω(r) = 0 (2.22)

(2.22) is a Schrödinger eigenvalue problem (in 2 dimensions) with energy ω2.
The radial potential has a r−2 behavior at the origin and goes to zero at
infinity. A a solution with ω = 0 is given by

η0(r) = ∂λ(2 arctan
λ

r
) ∝ r

λ2 + r2
(2.23)

This zero-mode has no node in the interval (0,∞). We know that a nodeless
solution of a Schrödinger eigenvalue problem is the ground state with lowest
energy. (2.23) is not normalizable, it is a so-called half-bound state. It does
only vanish as r−1 at infinity. However, the theorem about nodes also holds
for half-bound states. This tells us that there is no mode with ω2 < 0 and
that the soliton is classically stable in the sense given in the introduction.
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2.4.2 Dilatation invariance and marginal stability

(2.23) is a very unusual zero-mode which is rarely discussed in the literature.
Normally, a zero-mode in soliton theory is due to a continuous symmetry of
the action with respect to a field transformation S[φ] = S[eiαT φ] where T
is the generator of the symmetry and α some real number. Tφ is then the
corresponding zero-mode. For example translational invariance of a theory
leads to an arbitrary position of the soliton and to a zero-mode.1

The arbitrary parameter λ in our soliton solution makes one think of some
existing dilatation symmetry of our model. The transformation

xµ → α xµ (2.24a)

φ → φ/
√

α (2.24b)

leaves the action (2.1) invariant, but it violates the constraint on the norm
of φ. On the other hand, the transformation

xi → α xi (2.25)

leaves the potential energy in (2.2)
∫

d2x (∂iφa)
2 invariant, but it is not a

true symmetry of the theory: the kinetic energy T =
∫

d2x (φ̇a)
2 transforms

as T → α2T . Only time independent solutions have dilatation and even
conformal symmetry in the sense that from one known static solution we can
find another one through a conformal transformation on (x1, x2). However,
this symmetry does not have an associated conserved Noether current.2

The fact that the zero-mode is non-normalizable makes it impossible for
this mode to be excited. It would cost an infinite amount of energy. This is
reminiscent of the pseudo dilatation symmetry.

The arbitrariness of its size leaves the soliton only marginally stable. Lat-
tice simulations of this model in full 2 + 1 dimensions have been performed
[17, 18]. The results suggest that small perturbation of the n = 1 soliton will
make its size shrink or expand, depending on the applied perturbation. The
authors show that the shrinking occurs approximately linearly, λ(t) = λ0+vt
in (2.21a), if one assumes λ to be time independent at large distance from
the soliton center. Such a cutoff is required to keep the kinetic energy finite.

1This symmetry, however, is absent here because we pinned the soliton at the origin
by the hedgehog ansatz.

2In contrast, in 1 + 1 dimensions the massless σ-model has true conformal symmetry.
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2.5 Massive case

Let us now proceed to the model with m2 6= 0. No analytic solution is known
in the massive case. Furthermore, a well known theorem due to Derrick [19]
forbids the existence of static finite energy solutions.1 Suppose now we place
a static soliton in some m2 = 0 world and then adiabatically raise m. What
would happen ? The derivation of Derrick’s theorem suggests that the soliton
shrinks in some sense. On the other hand, the topological index (2.13) is
conserved anyway, with or without mass. In short: even if it seems evident
that, in the massive case, the soliton should decay, it is not entirely clear how
it can do this by keeping its topology (and also its energy) invariant. We
addressed this question in a lattice simulation, which is described bellow.

2.5.1 Asymptotic solutions

Let us briefly summarize. We made the hedgehog-ansatz for the field φ with
n = 1

φ(r, θ, t) =




cos θ sin f(r, t)
sin θ sin f(r, t)

cos f(r, t)


 (2.26)

The action for f(r, t) is:

S[f ] = 2πg

∫
dt rdr (

1

2
ḟ 2 − 1

2
f ′2 − sin2 f

2r2
−m2(1− cos f)) (2.27)

The energy (2.2) is given by:

E[f ] = 2πg

∫
rdr(

1

2
ḟ 2 +

1

2
f ′2 +

sin2 f

2r2
+ m2(1− cos f)) (2.28)

The topological charge (2.4) is given by:

n[f ] = −1

2
cos f |∞r=0 (2.29)

We fix the boundary condition for f as f(r = 0, t) = π and f → 0 as r → ∞,
so we have unit topological charge and vacuum at large distance. Vanishing
variation of (2.27) with respect to f results in the equation of motion:

− f̈ + f ′′ +
f ′

r
− sin 2f

2r2
−m2 sin f = 0 (2.30)

1for further details see appendix C.
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We get the same equation if we put the ansatz (2.26) into full set of equations
of motion (2.16).1 For m2 = 0, the equation has the solution

f(r, t) = 2 arctan
λ

r
(2.31)

Let us now consider the static case of equation (2.30), i.e. ḟ = f̈ = 0.
For small r, we can develop f and calculate the coefficients order by order
from the equation of motion:

f(r) = π + a1r − a1

12
(2a2

1 + 3m2) r3 + . . . (2.32)

a1 is the only free parameter and arbitrary higher order terms can be obtained
in that way.

For r → ∞ there are 2 possible asymptotic values : f → 0, π. Equation
(2.30) at large distance is

f ′′ +
f ′

r
− f

r2
∓m2f = 0 (2.33)

where the sign in front of m2 depends on the asymptotic value of f . In the
case f → 0, the asymptotic solutions are modified Bessel functions. Only
the exponentially decaying one is physically acceptable:

f → K1(mr) ' 1√
mr

e−mr (2.34)

In the case f → π the asymptotic solutions are ordinary Bessel functions:

f → α J1(mr) + β Y1(mr) ' 1√
mr

sin(mr + φ) (2.35)

The oscillatory behavior of the last solution is physically unacceptable be-
cause it leads to infinite energy (2.28).

We numerically integrated equation (2.30) for a static field f(r). As
asymptotics we used the two solutions found above. The result is shown
in Figure 2.2. We see that the solution starting from π at r = 0 tends
to an oscillatory solution around π at large distance. On the other hand,
the solution starting from an exponential at large r diverges at the origin.
This result follows necessarily from Derrick’s theorem: no static finite energy
solutions can exist in this model with m2 6= 0.

1If this is the case, the ansatz is said to “go through” the equation of motion. It
means that an extremum of S[f ] is also an extremum of S[φ]. We can expect that our
ansatz goes through because it respects symmetries of the original theory, such as rotation,
iso-rotation and time translation.
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Figure 2.2: Static solutions to equation (2.30). No field starting from π at r = 0
and going to 0 as r → ∞ can be found. This result is necessary from Derrick’s
theorem. As a reference, the static solution in the massless case is also plotted.

2.5.2 Lattice simulation

We addressed the question of decay in a lattice simulation of the partial
differential equation (2.30). The result is that the soliton shrinks in finite
time to a configuration which has all the energy concentrated near the origin.
The numerical integration scheme breaks down at this point. However, it
seems save to conclude that the final configuration is indeed singular.

It is convenient to express length and time in units of m−1 in this section.
The dimensionless variables x = mr and τ = mt will be used.

Definition of the soliton size In the general case of a time dependent
solution, the “size” of the soliton has to be defined. There is more than one
possibility. One definition is the mean radius over the energy density:

〈x〉 =
2

π

∫∞
0

xdx x T 00(x, τ)∫∞
0

xdxT 00(x, τ)
(2.36)

where T 00(x, τ) is the energy density per surface at radius x. It is amusing to
note that the time derivative of this size is given by the total field momentum:
d〈x〉
dτ

= 2
π E

∫∞
0

xdx T 0x = 2
π E

∫∞
0

xdx ḟf ′.
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Another definition is taken from the Skyrme model. In this model, the
the topological number density is interpreted as the baryon density. The
mean square radius of the baryon is defined as the mean r2 with respect to
the baryon density. In our model, this corresponds to:

Λ2 =
1

2

∫ ∞

0

xdx (1− cos f(x, τ)) (2.37)

Note that this “size” is exactly the symmetry breaking term of our model.
This definition of the size will be particularly useful in the quantum theory.

Since the total energy is conserved and we are considering a unit charge
configuration, the maximum energy density at the center may also be used
to define the spatial extension of the soliton:

l(t) =

√
4πg

T 00(x = 0, t)
(2.38)

If we take for example the static solution f(x, t) = 2 arctan λ
x
, the above

definitions yield 〈x〉 = l = λ. Λ2 diverges logarithmically because the static
solution has a x−1 tail. Definition (2.37) only makes sense in the massive
case when the solution has an exponentially decaying tail.

Initial configuration The above idea of placing a static soliton and then
raising the mass has the problem that we effectively add infinite energy to
the system: the integral proportional to m2 in (2.28) diverges for the static
solution. We have to adopt a different approach.

At large x, the field should go to the static asymptotic solution (2.34).
At small distance, the static field of the massless model is a good approx-
imate solution for the massive case. This is seen for example in figure 2.2.
We connect the two solutions at some point x = X by the requirement of
continuity up to the second derivative :

f(x, τ = 0) =

{
f0(x), x < X

f1(x), x > X
(2.39)

with

f0(x) = 2 arctan λ
x

(2.40a)

f1(x) = α√
x−x0

e−(x−x0) (2.40b)

The connection conditions are:

f0(X) = f1(X) (2.41a)

f ′0(X) = f ′1(X) (2.41b)

f ′′0 (X) = f ′′1 (X) (2.41c)
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Figure 2.3: An initial configuration for the lattice simulation. For x > X ' 0.3, an
exponential tail is taken. the boundary conditions are fixed at x = 0 and x = 5.15.
The size of this configuration is λ =

√
7 · 10−5 ' 10−2.

We have 3 parameters α, x0 and X and 3 equations (2.41). In the case λ ¿ 1
we can develop the solution in λ. For example, X ' 1− 2√

2
+O(λ)2. The pa-

rameters are obtained numerically (Newton-Raphson) to arbitrary accuracy
as a function of the initial size λ. (We will call the parameter λ in (2.40a)
the size of the initial configuration)

It is clear that any (topologically nontrivial) initial configuration could be
taken in principle. We prefer, however, to take the above initial configuration
because it is close to static.

Integration algorithm A staggered leapfrog algorithm is used to integrate
equation (2.30). The accuracy is second order both in time and space. The
mass m2 = 7 · 10−5 is taken for the simulation. Time steps are dt = 10−3.
Space steps are dr = 2 · 10−3 at the origin and doubled twice at r = 25
and r = 136. This is justified by the fact that the field and its derivatives
are very small at large r. Fixed boundary conditions are applied at r = 0
and rmax = 616, the total number of lattice points in space is thus 105. We
have rmax ' 5 m−1; a typical run has tmax ' 1.8 m−1. The waves travel at
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the speed dx
dτ

< 1. As a consequence, the effects from the fixed boundary
condition at rmax are not felt by the soliton (size ¿ m−1 in our calculations).

Results of lattice simulation The field configuration at different times
is plotted in figure 2.4. The derivative near the center gets bigger as f
approaches zero rapidly at the outside. The evolution of the energy density in
figure 2.5 shows a more and more pronounced concentration near the origin.
Figure 2.6 displays the different parts of the total energy as a function of time.
These quantities have a discontinuity at the time τ ' 1.6. The total energy
is not conserved at this point. This shows that the numerical integration
breaks down; the field gradient gets too big.

The evolution of the size as defined above is plotted in figure 2.7. The
size goes practically to zero at τ ' 1.6. The different definitions for the size
evolve proportionally to each other. In figure 2.8, the evolution of the size
is shown for different initial configurations, labelled by λ. In this figure, the
sizes are normalized to 1 at τ = 0. The corresponding normalized velocities
of shrinking are plotted in figure 2.9. The shrinking is uniformly accelerated
up to τ . 0.4 at a rate of ∂2

τ 〈x〉 ' 8 · 10−3λ. The initial acceleration is quite
accurately proportional to the initial size. The velocity of collapse stabilizes
at τ ' 1.1 at a rate of ∂τ 〈x〉 ' 6 ·10−3λ. The total time to collapse ∆τ ' 1.6
depends only little on the initial size of the soliton, at least for initial sizes
in the range considered: 1 6 λ 6 30.
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Figure 2.4: Evolution of a field with initial size λ = 5
√

7 · 10−5 ' 5 · 10−2.
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Figure 2.5: Evolution of the energy density of a field with initial size
λ = 5

√
7 · 10−5. The densities are normalized to the initial density at the origin.
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Figure 2.6: Evolution of the energy integrals. A discontinuity is encountered at
time τ ' 1.6 when the numerical integration breaks down.
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Figure 2.7: Evolution of the soliton size. The initial size is λ = 5
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different definitions of the size give very similar results.
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sizes shown are normalized to 1 at τ = 0.
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Figure 2.9: Evolution of normalized velocities of collapse for different initial sizes λ
(units

√
7 · 10−5). The collapse is uniformly accelerated up to τ ' 0.4. After that,

the soliton shrinks with approximately constant velocity, ∂τ 〈x〉 ' 6 · 10−3λ. The
total time to collapse ∆τ ' 1.6 depends little on the initial size of the configuration.
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3 Quantum Theory

In the last section we discussed the classical field theory of the model. We
concluded that a topologically nontrivial initial configuration collapses to a
singular configuration in a finite time interval. The classical evolution goes
through a state which has all its energy concentrated at the origin. It is clear
that such a state cannot exist quantum mechanically. In quantum mechanics,
the fields and their momenta are non-commuting operators and the relation
∆p∆q & ~ has to hold necessarily (∆p and ∆q are the uncertainties in
momentum and location respectively). The construction of a quantum theory
is thus crucial for the understanding of the model. There is, however, the
delicate point of renormalisation which has to be discussed first.

This section is organized as follows: after a remark on the renormaliz-
ability of our model, we briefly discuss results of one-loop calculations which
have been obtained by several authors. In the main part of the section, we
present our results on the quantum mechanical stabilization of the collapsing
soliton. The method we apply has been proposed for the Skyrme model in 4
dimensions.

3.1 Renormalizability

The first point concerns renormalizability. As is familiar from calculations
in quantum theories with an infinite number of degrees of freedom, physical
quantities often diverge. These infinities are removed by adding appropriate
counterterms to the lagrangian density. This is however not possible in our
3-dimensional model. In order to illustrate this, let us discuss the structure
of the vacuum sector of the model.

The model in terms of the fields f(x, t) and h(x, t) is given in (2.11). We
rescale the fields with α = g−1/2 :

f → αf (3.1a)

h → α h (3.1b)

With this redefinition, the lagrangian is

L =

∫
d2x

1

2
(∂µf)2 +

1

2
(sin αf)2(∂µh)2 −

(m

α

)2

(1− cos αf) (3.2)

We now expand in the fields in order to apply the usual Feynman graph
technique of perturbation theory. The classical equation of motion for the
field f , (2.16a), decouples from h to lowest order and f is simply a particle
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with mass m. The field h is the massless Goldstone boson. By expanding
(3.2) in the fields, we find the following vertices:

g−n (∂µh)2f 2n (3.3a)

m2 g−n+1 f 2n (3.3b)

with n a positive integer. 2n lines f and 2 lines h attach to a vertex (3.3a).
2n lines f attache to a vertex (3.3b). These interactions are clearly nonrenor-
malizable: The vertex parameter has negative energy dimension. In order
to get finite results out of perturbation theory, we would have to include an
infinite number of counterterms in the lagrangian. However, we consider the
model to be an effective theory, valid only at low energies (as it is done in
the Skyrme model). The region of validity becomes clear by looking at the
cross section in the tree approximation. From dimensional arguments the
cross section corresponding to the vertices (3.3) are proportional to

σ ∝ 1

ECM

(ECM

g

)n Ph1 ·Ph2

E2
CM

(3.4a)

σ ∝ 1

ECM

( m

ECM

)2 (ECM

g

)n−1
(3.4b)

where Ph1 and Ph1 are the momenta carried by the goldstone particles; ECM

is the center of mass energy of the particles. Equation (3.4a) shows that
the parameter g sets a natural energy cutoff: if we consider only particles at
energies ECM ¿ g, then we are allowed to neglect high n vertices. Further-
more, from (3.4b) we learn that m ¿ ECM ¿ g in order to have a consistent
theory. This provides us with natural infrared m and ultraviolet g cutoffs
which regularize the model.1

3.2 Vacuum Energy

The calculation of vacuum fluctuations in presence of a background field is
important in soliton theory. The soliton is considered as a classical back-
ground and one calculates semiclassical corrections to quantities like the en-
ergy. This semi-classical approach is equivalent to sum over 1-loop vacuum
Feynman diagrams in perturbation theory. This is a difficult task in general
which has to be addressed numerically in most cases. The general techniques
are explained by Weigel et al. [20, 21]. In the following I will briefly intro-
duce the principal idea and state the known results for the static hedgehog
soliton of our model.

1Equivalently, it sets a spatial short range lattice spacing to g−1.
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It is convenient here to use imaginary time it and the euclidian metric
gµν → −δµν . The generating functional of a model in quantum field theory
can be written as a Feynman path integral over the fields:

Z[0] =

∫
Dφe−S[φ] (3.5)

Suppose we have a classical field φc, solution of the equation of motion
δS[φ]
δφ
|φ=φc = 0. The semiclassical approximation means that we set φ ' φc+η.

and expand for small η. The integration can now be shifted1to η and the
gaussian integration performed:2

Z[0] '
∫

Dφ e−S[φc+η]

'
∫

Dη exp(−S[φc]− 1

2

∫
dx dy η(x)

δ2S[φc]

δφ(x)δφ(y)
η(y) )

= N(det S ′′[φc])
−1/2 exp(−S[φc])

= N exp(−S[φc]− 1

2
log det S ′′[φc]) )

(3.6)

here we have used the notation δ2S[φ]
δφ2

|φ=φc = S ′′[φc]. In order to get rid of

unphysical infinities (e.g. integration over infinite volume) one should divide
the generating functional by its value on the vacuum field, noted 0. Hence,
the effective action including quantum effects to 1-loop order can be written
as

Seff [φ] = S[φ]− S[0] +
1

2
log

det S ′′[φ]

det S ′′[0]

= S[φ] +
1

2
Tr(log S ′′[φ]− log S ′′[0])

(3.7)

where S[0] has been taken to be 0. The determinant and trace are understood
as the product respectively the sum over all eigenvalues of the operator S ′′[φ],
evaluated at the classical field φ.3 For a model with the (euclidian) lagrangian
density L = 1

2
(∂µφ)2 + V (φ) this operator is S ′′[φ] = −∂µ∂

µ + V ′′(φ).

1The Jacobian resulting from this shift is in general not one. Fortunately, this mul-
tiplicative constant is not important in most cases because we normalize with respect to
the vacuum configuration φc = 0.

2We consider only bosonic fields here. For fermions, signs would change.
3Zero eigenvalues are to be excluded from the determinant and treated separately. We

will not discuss the issue of zero-modes here. Details can be found in [1].
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In the case of a time independent background field, the operator S ′′ can
be separately diagonalized in space and time:

(ω2
k + ∂2

i − V ′′(φ)) ηk(x) = 0 (3.8a)

log det S ′′ = Tr log(∂2
t + ω2

k) (3.8b)

(3.8b) can now be calculated: the eigenfunctions are exp(νt) with eigenvalues
ν2 + ω2

k and the trace can be written as an integral:

log det S ′′ =
∫ ∞

−∞

dν

2π
log(ν2 + ω2

i ) =
∑

i

∫ ∞

−∞

dν

2π
log(1 + (ωi/ν)2) + 2 log ν

(3.9)
The last term is divergent and can be absorbed in the factor N . The remain-
ing integral is readily performed. The final result is

Seff = S[φ] +
1

2

∑
i

(ωi − ω0
i ) (3.10)

If we go back to real time, we see that the loop contribution to the action
(3.7) contributes to the energy of the static soliton φc as:

Eeff = E[φc] +
1

2

∑
i

(ωi − ω0
i ) (3.11)

Hence the name vacuum or casimir energy.
As a result, the effective energy to 1-loop order in presence of a static back-

ground field is determined by the sum over the eigenvalues of the Schrödinger
equation (3.8a). This sum is potentially divergent and has to be regularized.
Let us just note that the determinant (3.8b) can also be linked to the phase
shift of the scattering waves of (3.8a) by Levison’s theorem. In this way,
the sum over eigenvalues can be circumvented. More details can be found in
[3, 20, 21].

We have already written the Schrödinger equation (3.8a) for our static
soliton in the m2 = 0 case when we discussed stability. In fact, the soliton is
classically stable if this Schrödinger equation has no bound states.

The question of vacuum corrections to the static soliton of our model has
first been addressed by Rodriguez [22]. More recent and thorough studies
which include renormalization to loop order have been worked out by Moss
[23] and Walliser et al. [24]. The result of these authors is that the static
soliton (2.31) has the energy to loop order

E = 4πg − α

λ
(3.12)
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The numerical constant is α ' 0.248 (Moss) and α ' 0.5 (Walliser). As a
result, small hedgehog solitons have less energy and the vacuum fluctuations
lead to a shrinking of the soliton. However, these authors do not discuss
what happens when the soliton gets very small.

3.3 Quantum stabilization

Mechanisms of quantum stabilization have been proposed in the context of
the 4 dimensional Skyrme model by Chepilko et al. [25, 26, 27], Preston et
al. [28, 29], Balakrishna [30] and Carlson [31, 32]. We will use here the ideas
of Chepilko and colleagues.

We saw that there are static solutions of the form f(r, t) = F ( r
λ
) with

F (x) = 2 arctan(x−1) in the massless case. In the massive case we have to
look for a time dependent solution. However, the simple ansatz of a time
dependent size λ = λ(t) fails, because it has infinite energy. The idea of
Chepilko is to suppose that the profile F (x) differs from the static case, but
the soliton still changes only its scale during evolution

f(r, t) = F
( r

λ(t)

)
(3.13)

In order to have a configuration with nontrivial topology, the profile F must
satisfy the boundary conditions:

F (x) =

{
π x = 0

0 x →∞ (3.14)

The classical equation of motion (2.18) can certainly not be used to determine
the profile F . However, we can put the ansatz (3.13) into the action of our
model (2.27) and integrate over space. The result is an effective action for
the dynamical variable λ(t). The parameters of this action will depend on
the profile. A quantum theory can now be constructed for λ. Physically
admissible wave functions ψ(λ) should not only be square integrable but also
vanish at λ = 0. The reason is that λ = 0 corresponds to a singular field
configuration which should have zero probability.

ψ(0) = 0 (3.15a)∫ ∞

0

dλ |ψ(λ)|2 < ∞ (3.15b)

Chepilko et al. argue that the profile F should be obtained from the equation

〈n| δL
δF
|n〉 = 0 (3.16)
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Where L is the lagrangian (operator) and |n〉 are energy eigenstates. Hence,
for every quantum state n we have to find a profile which satisfies this equa-
tion. Chepilko’s derivation of the profile equation (3.16) is not entirely clear,
at least to the author. However, it is shown in appendix D that, for a large
class of models including the one discussed here, equation (3.16) is equivalent
to

δEn

δF
= 0 (3.17)

where En is the energy of the eigenstate n. This equation is at least reason-
able. It requires the energy to be stationary under variations of the profile.
A quantum stabilized soliton is in a stationary state and the classical param-
eters should adjust to minimize the energy.

Let us turn to our model. The lagrangian corresponding to (2.27) and
using the ansatz (3.13) is given by:

L/(2π) =
g

2
A[F ] λ̇2 − g B[F ]− m2g

2
C[F ] λ2 (3.18)

where the coefficients are given by

A[F ] =

∫ ∞

0

x3dx F ′(x)2 (3.19a)

B[F ] =
1

2

∫ ∞

0

x dx (F ′(x)2 +
sin2 F (x)

x2
) (3.19b)

C[F ] = 2

∫ ∞

0

x dx (1− cos F (x)) (3.19c)

(3.18) is a harmonic oscillator. The corresponding hamiltonian is

H/2π =
P 2

λ

2A[F ]g
+ g B[F ] +

m2g

2
C[F ] λ2 (3.20)

with the canonical momentum Pλ = Ag λ̇. The oscillator has the mass

M = Ag and the frequency Ω = m
√

C
A
. The well known spectrum is

En = 2π(g B + m

√
C

A
(n +

1

2
) ) (3.21)

The condition of vanishing wave function at λ = 0 restricts n to odd integers.
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3.3.1 Profile equation

The above discussion supposes the existence of a function F , satisfying the
profile equation. Let us first remark an interesting property of the limit
m2 → 0. In this limit, the spectrum (3.21) reduces to the classical energy
2πg B. The profile equation δF B = 0 is nothing else than the static equation
of motion (2.30) with the known solution (2.31). We recover the classical
case in the massless limit.

We want now explore the full profile equation (3.16). It is

1

2

m

g

√
C

A3
(n +

1

2
) δF A− δF B − m

g

1

2
√

AC
(n +

1

2
) δF C = 0 (3.22)

To analyze this equation, we first change variable:

z =
(m

g

√
C

A3
(n + 1/2)

)1/2

x (3.23a)

F̃ (z) = F (x) (3.23b)

The profile equation (3.22) gets

(z(z2 − 1)F̃ ′(z))′ +
sin 2F̃ (z)

2z
+ β[F̃ ] sin F̃ (z)z = 0 (3.24)

where β ≥ 0 is given by

β[F̃ ] =
A

C
(3.25)

We have used here the fact that β[F ] = β[F̃ ]. Notice also that B[F ] = B[F̃ ]
(The classical energy is scale invariant).

Let us first write the asymptotic solutions to (3.24). For large z and
taking into account F̃ → 0, these solutions are

F̃ →





c1 z−2 + c2 β = 0

c1 z−1−√1−β + c2 z−1+
√

1−β 0 < β ≤ 1

c1 z−1 sin(z
√

β − 1) + c2 z−1 cos(z
√

β − 1) β > 1

(3.26)

where c1 and c2 are integration constants. Finiteness of the energy (3.21)
restricts us to the case 0 ≤ β ≤ 1.

Equation (3.24) is a fairly complicated integral-differential equation. We
have numerically integrated equation (3.24) for fixed values of β with ap-
propriate boundary conditions. The numerical procedure is explained in
appendix E. We find smooth solutions for every 0 ≤ β ≤ 1. Unfortunately,
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Figure 3.1: A solution to the profile equation (3.24) with β = 1. The differential
equation has a singular point at z = 1. However, smooth solutions can be found.

all found solutions have c2 ' 10−2, i.e. F does not vanish fast enough at
infinity to make A and C finite. However, The ratio A/C is finite and can
be calculated explicitly in this case (appendix E):

A

C
= (−1 +

√
β − 1)2 (3.27)

In order to have a consistent solution, we have also to satisfy the relation
(3.25). This gives us two solutions: β = 0 and β = 1. The first one has
infinite energy so we are left with β = 1. The profile for β = 1 is plotted in
figure 3.1. The corresponding classical energy is B[F ] ' 2.0011.

We have now a solution F̃ to the profile equation, but A[F̃ ] and C[F̃ ]
diverge logarithically. One can easily verify that this implies that also A[F ]
and C[F ] diverge. Hence, we are left with the harmonic oscillator (3.20)
with finite frequency Ω = m

√
A/C but infinite mass M = g A. A desperate

situation at first sight. The particle λ, being infinitely heavy, is constraint to
sit at the origin and the soliton has decayed. The quantity 〈n|λ2|n〉, which
could be taken as the soliton size, vanishes. On the other hand, a physical
quantity like the energy does not care at all: it is finite and has different
levels. 〈λ2〉 is not the only possible definition of the size. It vanishes because
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the profile F has a long tail. A reasonable definition of the soliton size should
rather be large in the limit of a long range profile.

A solution is presented by an idea from the Skyrme model. As we already
discussed, the topological charge density in this model is interpreted as the
particle density. If we adopt this point of view, we can calculate the matrix
element of the mean square radius (2.37):

〈n|Λ2|n〉 =

∫ ∞

0

dλ |ψn(λ)|2 1

2

∫ ∞

0

rdr (1− cos F (
r

λ
))

=

∫ ∞

0

dλ |ψn(λ)|2 λ2 1

2

∫ ∞

0

zdz (1− cos F (z))

=

∫ ∞

0

dλ̂ |ψ̂n(λ̂)|2 λ̂2

mg
√

AC

1

4
C[F ]

(3.28)

Finally, taking into account A/C = β = 1 and the properties of the harmonic
oscillator, we get

〈n|Λ2|n〉 =
1

4mg
(n +

1

2
) (3.29)

Inspired by this result, we are led to the conjecture that all physically ob-
servable quantities of this model depend only on the ration A/C while A and
C may diverge. One might argue that, in this case, the change of variable
(3.23) is not permissible. This issue is resolved if we regularize the integrals
A and C by introducing a large cutoff (typically proportional to m−1 because
this is the infrared cutoff of our model). The Integrals are then finite and
the change of variable can be done. Our final results do not depend on this
cutoff, provided it is large.

Of course, these results would be useless if the quantum stabilized soliton
turned out to be smaller then the lattice spacing g−1. However, we have√
〈Λ2〉/g−1 '

√
g/m À 1.

3.3.2 Vacuum fluctuations in the massless case

Let us briefly discuss the case when vacuum fluctuations are taken into ac-
count. As mentioned previously, vacuum fluctuations around the static soli-
ton in the massless model add a term −α/λ to the energy. This makes the
classical soliton unstable. We can now apply exactly the same procedure
as before and quantize the dilatation mode λ in the massless model. The
resulting spectrum is that of the one-dimensional hydrogen atom [33]:

En = 2πg
(
B[F ]− A[F ]α2

2n2

)
(3.30)
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However, if we write the profile equation for this model, we get the previous
profile equation (3.24) with β = 0. As we discussed in the massive case,
this leads to a divergent energy (B) and the soliton cannot exist. In reality,
however, the vacuum contribution to the energy depends on the profile of
the soliton. Supposing the λ−1-law is still valid (which is reasonable from
dimensionality) then the parameter α is a functional of F . This changes the
profile equation. A conclusive answer in the massless case can only be given
if the vacuum fluctuations are taken into account for a varying profile. We
have not further explored this question.

3.4 Discussion

The results (3.21) and (3.29) show that the soliton is stabilized when quantum
effects are taken into account. We obtained a quantum ground state and a
tower of exited soliton states. The size is nonzero and the soliton is stabilized.
If we restore cgs units, we get 〈Λ2〉 ∝ ~2c2/(mg) where c is the speed of light.
It is now apparent that the size of the soliton vanishes in the limit ~ → 0.
This means that we have a quantum soliton which does not exist in the
classical limit.

The physical meaning of this result is somewhat unusual: the quantum
soliton is a superposition of solitons with different sizes. For example we
can write the form factor of the quantum soliton in the energy state n as
fn(r) =

∫∞
0
|ψn(λ)|2dλF (r/λ). To our knowledge, such a type of soliton has

only been studied very scarcely in the literature.

Let us briefly make a remark on the method. The ansatz (3.13) effectively
reduces the infinite number of quantum degrees of freedom of the field theory
to one quantum degree λ and a classical field F . This is certainly a very gross
approximation and its validity is a priori debatable. Let us quote Carlson
[31] who said in this context:

Incorporating quantum effects one degree of freedom at a time
is an inexact science. It is not a systematic expansion in powers
of ~, but rather an expansion in what are viewed as the “impor-
tant” degrees of freedom. Which degree of freedom are important,
however, can only be decided a posteriori.

It is a central claim of this work that λ is an important, and even the most
important quantum degree of freedom for small solitons. Any field configura-
tion, independently of its actual form factor (its classical “shape”) has to go
through a singular configuration in order change its topology. In the example
discussed in this work, the classical field goes through a configuration with
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f(r = 0) = π and f(r > 0) = 0. The parameter λ in f(r) = F (r/λ) seems to
be a good measure of this singular behavior. For any smooth trial function
F respecting the boundary conditions (3.14), we expect the classical field to
go through the configuration with λ = 0. The ansatz used is a very general
one for such a field near the singularity.

Another important point is that the classical energy of the soliton does
not depend on λ. The standard collective coordinate approach for quantizing
zero-modes cannot be directly applied to the dilatation variable because of
its non-normalizability. We solve this problem by introducing the profile
function F . From then on, we proceed in accordance with the standard
prescription for quantizing zero-modes (see e.g. [1]). It is a common practice
in field theory to treat zero-modes separately from other quantum effects.
And normally, their effect is more important than other degrees of freedom.
It is clear that, in order to have a complete picture, we should also include
the rotational zero-mode as a quantum degree of freedom. Our results on
this mode are not included in this report because the corresponding profile
equation has not been fully analyzed yet. However, its contribution to the
energy are expected to be of the same order as the corrections due to the λ
mode. There seems to be no indication that instability should enter in this
way.
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4 Conclusion and outlook

In the first section we examined the classical field equations. We concluded
that the soliton shrinks to a configuration which has all its energy concen-
trated at the origin. This is an unphysical situation which is naturally pre-
vented by quantum mechanics. We were left with two possibilities: either the
soliton decays to radiation which would mean that a change in topology oc-
curs. Or the shrinking soliton is stabilized at some stage by quantum effects.
In order to construct a quantum theory, we reduced the field degrees of free-
dom. We picked out one quantum degree of freedom λ and the classical field
F . With this reduction, we were able to show that a quantum stabilization
indeed occurs.

It is clear that the present study leaves open questions. For example,
more modes should be included into the quantum reduction and their effects
should be compared. First of all, the rotational mode has to be considered.
The next step would be to include the full vacuum corrections to the quantum
soliton. As we discussed, this will most probably add a λ−1 potential into
the reduced problem. Here also, the corresponding profile equation would
have to be analyzed. Another point is the profile equation itself. Its role in
the stabilization mechanism is not entirely clear. Furthermore, the relation
to the profile equations proposed by other authors should be analyzed more
closely.

Finally, let us remark that the quantum soliton could find interesting
application in cosmology. The use of a quantum soliton in the brane world
scenario has not been investigated yet. Our four dimensional world in the
domain wall of a quantum soliton may have very unusual properties. We
hope to explore this question in future work.
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Figure A.1: Map of a circle to the plain. There is only one homotopy class because
all circles can be deformed to one another.

Figure A.2: Map of a circle to the plain with a hole. Homotopy classes are non-
trivial.

A On winding numbers

The winding number is an index which allows us to classify the maps from
one space into another. Consider for example the map which takes a circle
S1 to a plain R2 in figure A.1. We say that two maps belong to the same
homotopy class if the image of one map can be continuously deformed to
the image of the other. One can show that the set of homotopy classes
has the structure of a group. In the example above we see easily that the
circle on the plain can be deformed to any other circle. We say in this case
that the homotopy group is trivial, i.e. it contains only one element. If we
make the target space slightly more complicated, for example if we cancel
one point, then the homotpy group will be non-trivial. In figure A.2 we see
that the circle a) which goes around the point cannot be deformed to b)
without cutting it into two pieces. Furthermore, the sense of rotation is now
important: a circle which goes once around the point clockwise cannot be
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deformed to one turning anti-clockwise! The topological classification is as
follows: we say that two maps are equivalent if the circle goes n times around
the point turning clockwise. To any circle we can now associate an integer n:
to circle a) n = −1 to circle b) n = 0. As far as notation is concerned, we call
the homotopy group of maps from the circle to the plain π1(R \ {0}). The
fact that it can be represented by an integer is written as π1(R \ {0}) ≡ Z.

Let us now go on to the slightly more complicated topological space of
this work. As is was discussed, fields φ with finite energy have to go to a
constant value at infinity, independent of the direction taken. This allows us
to compactify the physical space R2 to the sphere S2

phys. That is, R2 with
the points at infinity identified is topologically equivalent to S2

phys. Hence
any finite energy configuration is a map

φ : S2
phys → S2

int (A.1)

The corresponding homotopy group is written π2(S
2
int). Exactly analog to

the example given above, to any configuration we can associate the number
of times the physical space is “wrapped” around the internal space by the
finite energy configuration.

In order to get an explicit expression of this number in terms of the field,
consider the infinitesimal surface in physical space, dx1 dx2. This surface will
be mapped to ‖∂1φ ∧ ∂2φ‖ by φ. To get the winding number, we integrate
this quantity over all physical space and divide it by the total volume of
internal space, i.e. 4π:

n =
1

4π

∫

Sphys
2

d2x φ · ∂1φ ∧ ∂2φ =
1

8π

∫

Sphys
2

d2x εabcεijφa∂iφb∂jφc (A.2)

This is the expression used in the text.
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B The CP (1) formulation

There are different formulations of the O(3) nonlinear σ-model than the one
used in this work. The so called CP (1) formulation is interesting for at least
one reason: it allows one to obtain static solutions with arbitrary topological
number (for m2 = 0). Let us briefly discuss how this works.

The O(3) σ-model is originally defined on a sphere S2
int. We can project

this sphere onto the complex plain C. Taking the stereographic projection,
this is the transformation:

w = w1 + iw2 =
φ1 + i φ2

1− φ3

(B.1)

Furthermore, one can associate the physical space R2 with the complex plain,
z = x1 + i x2. We can now formulate a completely equivalent field theory in
terms of the complex field w(z, t), defined on the complex space.

Let us briefly return to the standard O(3) formulation of the model. In
section 2, we derived the inequality (2.7). This inequality allowed us to find
the lower bound (2.8) on the energy functional. It is easy to see that, in the
case m2 = 0, this inequality (2.8) can only be saturated for a static field.
We can try looking for such a field in a given topological sector. This field
necessarily saturates the inequality (2.7), i.e.

∂iφa ± εabcεijφb∂jφc = 0 (B.2)

The sign in (B.2) will be identified with the sign of the winding number
we want to obtain. A field satisfying (B.2) minimizes the energy in some
topological sector and it is easily checked that it also satisfies the full set
of field equations δS/δφ. However, it has to be noted that the inverse is
not true in general. There might be higher local energy minima in a given
topological sector. Note the formidable simplification of the problem: we
have passed from the full equation of motion (second-order) to a system of
first-order differential equations (B.2).

The equations (B.2) are particularly interesting in the CP (1) language.
They are:

∂w1

∂x1

∓ ∂w2

∂x2

= 0

∂w1

∂x2

± ∂w2

∂x1

= 0

(B.3)

These are nothing else than the Cauchy-Riemann equations on the complex
function w. The general solution of (B.3) is w(x1 + ix2) = f(x1± ix2), where
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f(z) is an arbitrary analytic function of z. In fact, singularities are allowed
for the function f(z), they simply mean that the field is on the south pole
of S2

int, i.e. φ3 = −1. However, a branch-cut is not allowed because the
field would not be single-valued. Such functions with isolated poles but no
essential singularities are meromorphic functions. We can restrict ourselves
to functions w which are meromorphic in the variable z = x1 + ix2, i.e. to
solutions with positive winding number n. The corresponding −n solution
can simply be obtained by inversion of one coordinate-axis.

It can be shown [12] that the most general minimum solution in a topo-
logical sector n is given by:

w(z) =
∏

i

(z − zi

λ

)mi ∏
j

( λ

z − zj

)nj

(B.4)

with n =
∑

mi >
∑

nj. We see that there are in general 2n arbitrary com-
plex parameters zi, zj and λ. zi define essentially the position and orientation
of the different solitons. λ is the scale parameter which is due to the dilata-
tion invariance of static solutions. In section 2 we discussed static hedgehog
solutions with topological number n. In CP (1) they are simply

w(z) =

(
λ

z

)n

(B.5)
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C Derrick’s theorem

Several field theories in 1+1 dimensions are known to possess static (classical)
soliton solutions. The natural question arises whether we can find solitary
solutions in higher dimensions as well. In the case of scalar field theories, the
following theorem due to Derrick [19] answers this question:

Consider the action for a scalar field in D + 1 dimensions:

S =

∫
dD+1x

1

2
F ab(φ)∂µφa∂

µφb − V (φ) (C.1)

where a, b = 1 . . . N , Fab(φ) is a positive definite matrix. By adding a con-
stant, we can always choose V (φ0) = 0, φ0 is the vacuum configuration of
the model. The hamiltonian of the model is given by:

H =

∫
dDx

1

2
F ab(φ)(φ̇aφ̇b + ∂iφa∂iφb) + V (φ) ≥ 0 (C.2)

Let φ(x) be a static solution of δφH = 0. Consider the scaled field φλ(x) =
φ(λx). It is clear that φλ should minimize (or maximize) the hamiltonian
for λ = 1:1

d

dλ
H[φλ] |λ=1= 0 (C.3)

d

dλ
H[φλ] =

d

dλ

∫
dDx

1

2
F ab(φ(λx))∂iφa(λx)∂iφb(λx) + V (φ(λx)) (C.4)

After a change of variable x′ = λx:

d

dλ
H[φλ] =

d

dλ

∫
dDx′ λ−D (λ2 1

2
F ab(φ)∂iφa∂iφb + V (φ)) (C.5)

Deriving (C.5) and setting λ = 1 together with (C.3) yields the relation:

(2−D) F ab(φ)∂iφa∂iφb = D V (φ) (C.6)

The righthand-side of (C.6) and the term quadratic in the fields are positive.
This sets the following restrictions on a static solution:

D = 1 F ab(φ) ∂iφa ∂iφb = V (φ) A static solutions may exist.

D = 2 V (φ) = 0 A static solutions may exist only

in regions with zero potential.

D > 2 F ab(φ) ∂iφa ∂iφb = V (φ) = 0 The only static solutions are trivial,

i.e. constants.

1Otherwise φ would not be a static solution
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The case D = 2 is the only interesting extension to 1 + 1 dimensions.
The condition for a nontrivial static solution is a flat potential or at least a
potential with a degenerate minimum. This is what happens in the 2 + 1
dimensional nonlinear σ-model. A static soliton exists in the massless case,
but it necessarily becomes time dependent when a potential is added.

It has to be noted that this theorem applies in particular to σ-models
defined on a curved internal space. The matrix F ab(φ) represents the metric
on this manifold.

D Equivalence of two equations for the pro-

file function

In a series of papers [25, 26, 27], Chepilko et al. proposed a method to
quantize the classically unstable soliton of the (pure1) Skyrme-model. As
in the model considered here, there is an unknown profile function, called
“chiral angle”. It is argued by these authors that the equation from which
the profile function F should be determined is :

〈n| δL
δF
|n〉 = 0 (D.1)

where L is the lagrangian (operator) and |n〉 is an energy eigenstate. An ad-
missible profile F for a state |n〉 should make the mean lagrangian stationary.
The authors warn explicitly from using another profile equation:

δEn

δF
= 0 (D.2)

where En is the energy of the energy eigenstate n. They [26] say that equa-
tions (D.1) and (D.2) are not equivalent in general. It is not clear what
degree of generality is required by these authors. However, it is shown in the
following that the two equations are equivalent for a large class of models,
including the model discussed in this work.

Let us first introduce the standard

Definition Let L(q(t), q̇(t),α) be a lagrangian in terms of the dynami-
cal variables qi and an arbitrary number of parameters αj. The canon-
ical impulsions are pk = ∂q̇k

L(q, q̇,α) and the canonical hamiltonian is
H(p,q,α) =

∑
k pk q̇k(p,q, α)−L(q, q̇(p,q,α), α). A discrete energy eigen-

state |n〉 satisfies H|n〉 = En|n〉.
1i.e. without the so-called stabilizing Skyrme-term.
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Theorem D.1

〈n|∂αj
L(q(t), q̇(t),α)|n〉 = −∂αj

En

Proof Let us vary the energy with respect to the parameters αj:

∂αj
En = ∂αj

〈n|H|n〉
〈n|n〉 =

δ

δ|n〉
〈n|H|n〉
〈n|n〉︸ ︷︷ ︸
0

∂αj
|n〉+ 〈n|∂αj

H|n〉

The first term on the right hand side is the variational formulation of the
eigenvalue equation H|n〉 = En|n〉. It vanishes by definition of |n〉. When
evaluating the remaining part, we have to be careful to retain the correct
dependency on αj:

〈n|∂αj
H(p,q,α)|n〉 = 〈n| ∂αj

∑

k

pk q̇k(p,q,α)− ∂αj
L(q, q̇(p,q,α),α)|n〉

= 〈n|
∑

k

pk ∂αj
q̇k −

∑

k

∂q̇k
L(q, q̇,α)∂αj

q̇k − ∂αj
L(q, q̇,α)|n〉

= − 〈n|∂αj
L(q, q̇,α)|n〉

QED.

In the limit of an infinite number of parameters αj, the theorem shows
the equivalence of (D.1) and (D.2). The possibility that some subtleties are
involved in this limit can not be excluded. It should also be noted that
above derivation is purely formal. No special care has been taken to handle
continuous spectra etc. Therefore, the equivalence can not be regarded as
fully set. However, in the model discussed in this work the equivalence has
been verified explicitly.
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Figure E.1: The profile function for different values of the parameter β.

E Numerical procedure to solve the profile

equation

In this appendix we want to explain the numerical scheme we have used
to solve the profile equation (3.24). The task is to solve this equation for
β ∈ [0, 1] with F (z) smooth on z ∈ (0,∞) and subject to the boundary
conditions F (0) = π and F (z) → 0 as z →∞.

The profile equation has a singular point at z = 1. We develop the
solution F (z) ' F (1) + F ′(1)z + . . . around z = 1. If F is smooth at z = 1,
it has to satisfy:

(F ′ +
sin 2F

4
+ β

sin F

2
)|z=1 = 0 (E.1)

Hence, we have two parameters F ′(0) and F (1) which must be adjusted such
that F (z) is continuous and smooth on the interval (0, 1). It is a natural
feature of singularities that one can only numerically integrate away of them.
Hence, we pick an arbitrary point, z0 = 0.5, and integrate the equation from
z = 0 to z = z0 and from z = 1 to z = z0. We define

∆1(F
′(0), F (1)) = Fl(z0)− Fr(z0) (E.2a)

∆2(F
′(0), F (1)) = F ′

l (z0)− F ′
r(z0) (E.2b)

where Fl and Fr are the numerical solutions from the left respectively the
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β B[F ] c2

0.0 2.0026 0.014
0.2 2.0016 0.014
0.4 2.0014 0.014
0.6 2.0013 0.015
0.8 2.0012 0.017
1.0 2.0011 0.051

Table E.1: Parameters of the found profile functions for some values of β. B is the
classical energy functional and c2 the parameter of the asymptotic solution (3.26).

right integration. The problem is solved if we find (f 0
1 , f 0

2 ) such that
∆(f 0

1 , f 0
2 ) = 0. This is a root finding problem in 2 dimensions. We have

used the Newton-Raphson method with numerical derivatives to solve this
problem and found solutions for any β in the desired range. The result-
ing profiles are shown in figure E.1. In this loglog-plot, the tail x−1+

√
1−β

is apparent. The energy functional B[F ] and coefficients of the asymptotic
solutions (3.26) are shown in table E.1.

Although A[F ] and C[F ] defined in (3.19) diverge for the solutions found,
their ratio can be calculated from the asymptotics of F (3.26):

A

C
= lim

R→∞

∫ R
z3dz F ′2

2
∫ R

zdz (1− cos F )

= lim
R→∞

∫ R
z3dz (−1 +

√
β − 1)2 c2

2 z−4−2
√

β−1

∫ R
zdz c2

2 z−2−2
√

β−1

= (−1 +
√

β − 1)2

(E.3)

This result was used in (3.27).
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F Numerical scheme to integrate the field equa-

tions

In the following, we want to describe briefly the numerical scheme used to
integrate equation (2.30). It is a second order partial differential equation
for the real function f(x, t). We first write it in the form

f̈(x, t) = F(f(x, t), f ′′(x, t), f ′(x, t), x) (F.1)

Space is discretized by xi = x0 + i∆x and we approximate the space deriva-
tives on the right hand side of (F.1) by

f ′(xi, t) = (f(xi+1, t)− f(xi−1)) (2∆x)−1 + O(∆x)2

f ′′(xi, t) = (f(xi+1, t)− 2f(xi, t) + f(xi−1)) ∆x−2 + O(∆x)2 (F.2)

For the time integration we use the so-called staggered leapfrog algorithm.
Let the function f(xi, tn−1) be known at the time tn −∆t and the velocities
ḟ(x, tn−1/2) at the time tn−∆t/2. We can approximate the field and velocities
at the next time step by two calculations:

f(xi, tn) = f(xi, tn−1) + ∆t ḟ(xi, tn−1/2) + O(∆t)2

ḟ(xi, tn+1/2) = ḟ(xi, tn−1/2) + ∆tF(f(x{i}, tn), xi) + O(∆t)2
(F.3)

The core routine of the code, called evolve(), implements this integration. It
is given below.

We actually doubled the space step ∆x at large distance from the origin.
This is justified by the fact that the differences in (F.2) get very small outside
the soliton. The boundary conditions are simply implemented by keeping the
field values fixed at x0 = 0 and xNx ' 5m−1.

int evolve(void)

{

/* Time integration routine for 2d pde

Samuel Bieri 04

double f[i] field at the point r[i]

double fdot[i] velocity at the point r[i]

double fddot[i] acceleration at r[i]

STEP2 index at which step is doubled

Nt, Nx total time/space steps

*/
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int i;

double fddot;

for(t=0; t<Nt; t++)

{

//Save output at certain time intervals

if(!(t%TIMESTEP)) {

save_data();

}

// Advance f one time step:

for(i=1; i< Nx-1; i++) f[i] += dt * fdot[i];

//Advance fdot one time step

// Make small space steps first:

for(i=1; i< STEP2; i++) {

//Calculate fddot_i+1 as a function of f_i :

fddot = (f[i-1]-2.*f[i]+f[i+1])/dx2 + (

(f[i+1]-f[i-1])/dx - sin(2.*f[i])/r[i] )/(2*r[i])

- m2*sin(f[i]);

fdot[i] += dt * fddot;

}

// Transition to double space step:

fddot = (f[i-2]-2.*f[i]+f[i+1])/(4*dx2) +

( (f[i+1]-f[i-2])/(2.*dx) - sin(2.*f[i])/r[i] ) / (2*r[i])

- m2*sin(f[i]);

fdot[i] += dt * fddot;

// Continue with twice the step size:

for(i=STEP2+1; i< Nx-1; i++) {

fddot = (f[i-1]-2.*f[i]+f[i+1])/(4.*dx2) +

( (f[i+1]-f[i-1])/(2.*dx) - sin(2.*f[i])/r[i] ) / (2*r[i])

- m2*sin(f[i]);

fdot[i] += dt * fddot;

}

}

return 0;

}

49





References

[1] R. Rajaraman. Solitons and instantons. an introduction to solitons and
instantons in quantum field theory. Elsevier Science, 1987.

[2] D. W. McLaughlin A. C. Scott, F. Y. F. Chu. The soliton: A new
concept in applied science. Proceeding of the IEEE, 61(10), 1973.
Interesting information and links can also be found on:
http://www.ma.hw.ac.uk/~chris/scott_russell.html.

[3] Sidney Coleman. Aspects of symmetry. Cambridge, USA: Univ. Pr.
(1985) 402 p.

[4] N. H. Christ and T. D. Lee. Quantum expansion of soliton solutions.
Phys. Rev., D12:1606, 1975.

[5] J. Goldstone and R. Jackiw. Quantization of nonlinear waves. Phys.
Rev., D11:1486–1498, 1975.

[6] R. Jackiw. Quantum meaning of classical field theory. Rev. Mod. Phys.,
49:681–706, 1977.

[7] T. H. R. Skyrme. A nonlinear field theory. Proc. Roy. Soc. Lond.,
A260:127–138, 1961.

[8] T. H. R. Skyrme. Particle states of a quantized meson field. Proc. Roy.
Soc. Lond., A262:237–245, 1961.

[9] Gerard ’t Hooft. A planar diagram theory for strong interactions. Nucl.
Phys., B72:461, 1974.

[10] Edward Witten. Baryons in the 1/n expansion. Nucl. Phys., B160:57,
1979.

[11] T. Gisiger and Manu B. Paranjape. Baby skyrmion strings. Phys. Lett.,
B384:207–212, 1996.

[12] Alexander M. Polyakov and A. A. Belavin. Metastable states of two-
dimensional isotropic ferromagnets. JETP Lett., 22:245–248, 1975.

[13] I. Dzyaloshinsky, Alexander M. Polyakov, and P. Wiegmann. Neutral
fermions in paramagnetic insulators. Phys. Lett., A127:112–114, 1988.

[14] Tony Gherghetta, Ewald Roessl, and Mikhail E. Shaposhnikov. Living
inside a hedgehog: Higher-dimensional solutions that localize gravity.
Phys. Lett., B491:353–361, 2000.

51

http://www.ma.hw.ac.uk/~chris/scott_russell.html�


[15] Edward Witten. Superconducting strings. Nucl. Phys., B249:557–592,
1985.

[16] V. Rubakov. Classical theory of gauge fields. Princeton, USA: Univ. Pr.
(2002) 444 p.

[17] Robert A. Leese, Michel Peyrard, and Wojciech J. Zakrzewski. Soliton
stability in the o(3) sigma model in (2+1)- dimensions. Nonlinearity,
3:387–412, 1990.

[18] B. Piette and W. J. Zakrzewski. Shrinking of solitons in the (2 + 1)-
dimensional sigma model. Nonlinearity, 9:897, 1996.

[19] G. H. Derrick. Comments on nonlinear wave equations as models for
elementary particles. J. Math. Phys., 5:1252–1254, 1964.

[20] H. Weigel. Casimir energies in the light of renormalizable quantum field
theories. AIP Conf. Proc., 660:88–101, 2003.

[21] V. Khemani M. Quandt M. Scandurra N. Graham, R. L. Jaffe and
H. Weigel. Casimir energies in light of quantum field theory. Phys.
Lett., B572:196–201, 2003.

[22] J.P Rodriguez. Quantized topological point defects in two-dimensional
antiferromagnets. Phys. Rev., B39:2906, 1989.
The conclusion that the vacuum corrections lower the energy as the
soliton size increases is wrong, as has been noted by [24].

[23] Ian G. Moss. Soliton vacuum energies and the cp(1) model. Phys. Lett.,
B460:103–106, 1999.

[24] H. Walliser and G. Holzwarth. The casimir energy of skyrmions in the
2+1-dimensional o(3)-model. 1999.

[25] N. M. Chepilko, K. Fujii, and A. P. Kobushkin. Geometrical approach
to the nonlinear sigma model. Phys. Rev., D43:2391–2395, 1991.

[26] N. M. Chepilko, K. Fujii, and A. P. Kobushkin. Scale symmetry of
quantum solitons. Phys. Rev., D44:3249–3253, 1991.

[27] A. Kostyuk, A. Kobushkin, N. Chepilko, and T. Okazaki. Quantum soli-
tons of the nonlinear sigma model with broken chiral symmetry. Phys.
Atom. Nucl., 58:1398–1403, 1995.

52



[28] R. K. Bhaduri, Akira Suzuki, Abdalla H. Abdalla, and M. A. Preston.
Quantum stabilization of the chiral soliton. Phys. Rev., D41:959, 1990.

[29] A. Abdalla and M. A. Preston. Stabilization of the skyrmion. Phys.
Rev., D53:3967–3975, 1996.

[30] B. S. Balakrishna, V. Sanyuk, J. Schechter, and A. Subbaraman. Cutoff
quantization and the skyrmion. Phys. Rev., D45:344–351, 1992.

[31] J. W. Carlson. Properties of vibrating skyrmions. Nucl. Phys., B253:149,
1985.

[32] J. W. Carlson. Vibrating skyrmions. 2. quantum corrections to masses.
Nucl. Phys., B277:253, 1986.

[33] A. N. Gordeyev and S. C. Chhajlany. One-dimensional hydrogen atom:
a singular potential in quantum mechanics. J. Phys. A: Math. Gen., 30,
1997.

53


