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Abstract. We give a short introduction to the most important
model for correlated electron systems: the Hubbard model. Not
much care is taken to rigor, but relevant references are given.
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1. Introduction

The Hubbard model has a relatively long history. Very early (in the
1950s) it was used by Pariser, Pople and Parr for orbital calculations
and to describe molecules in quantum chemistry (PPP-method, see
e.g. [1] for some history of quantum chemistry). Variations were used
subsequently by P. Anderson and others in different contexts.

The Hubbard model in its modern form was systematically intro-
duced independently by Gutzwiller [2], Hubbard [3] and Kanamory [4]
in the early 1960s. The aim was to study magnetism in transition met-
als. This early work initiated a burst of activity in the field lasting
until today. However, despite its simplistic appearance, the Hubbard
model is not fully understood yet.

The Hubbard model plays an extremely important role in the field
of correlated lattice systems. We may call the Hubbard model (with
some exaggeration) the Standard Model of solid state physics. The
main reason of its popularity is the inclusion of electron correlation, its
simplicity and the rich physics contained in the model.

We all remember (and use in our daily work) introductory solid state
physics courses, when we were taught about the band structure of
solids. In this approach, electrons are considered to move indepen-
dently in a periodic background potential. The so-called Hartree-Fock
approximation gives good quantitative and qualitative predictions for
many solids, for example if they are metallic or insulating. However,
the band model breaks down in a number if cases. We now know
that electron-electron interaction is crucial to the understanding of im-
portant properties of some materials. In particular, high temperature
(unconventional) superconductivity turns out to be impossible to un-
derstand in the Hartree-Fock approximation.

Let me just mention the well known example of Cobalt-Oxide(CoO)
where the Hartree-Fock approximation brakes down. CoO has an odd
number of electrons per unite cell and it should be metallic according
to band theory. However, experimentally it turns out to be a very
tough insulator.

Most of the information given here can be found in greater detail in
standard solid state physics textbooks. For a good introduction to the
Hubbard model and to correlated systems in general, see the book by
P. Fazekas [5].
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2. Tight binding picture of solids

In the tight binding approach, we start off from a very diluted solid
with large lattice spacing. The atoms at each lattice site are supposed
to be in their ground state with some hydrogen-like electronic configu-
ration (1s11s22s12s22p4 ...). First, we discard all inner structure of the
atom: we forget about nucleus and the inner inert gas configuration.
Then we allow electron tunneling from site to site. The steps in this
approximation are cartooned in figure 1. In B) the electrons of the
outer shells are in itinerant states, delocalized Bloch waves. The inner
shells are well described in terms of localized states. However, these
inner electrons may also tunnel to nearest sites and delocalize in this
way. In C) we restrict ourselves to a single shell with hopping electrons.
The last step D) consists in neglecting the whole inner structure of the
atom and the orbital, and to consider the picture of localized electrons
that hop from site to site.

localized, hopping electrons

itinerant, bloching electrons

A)

B)

C)

D)

Figure 1. Tight binding approximation: The internal
structure of the atoms is neglected and localized electrons
tunnel from site to site.
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In order to bring this tight binding picture in a mathematical form,
we have to go to the usual second quantized picture of many particle
physics. See appendix A for some remainders on second quantization.

First, we define the electron creation and annihilation operators of
electrons in localized, so called Wannier states:

Be φ(~r − ~Ri) the wave function of the electron bound to site i, then

c†iσ is the creation operator of such a state:

(1) φ(~r − ~Ri)χ(σ) = c†iσ |0〉
σ ∈ {↑, ↓} is the spin of the electron on site i. The vacuum state |0〉
is defined as the state with no electrons, i.e. it vanishes by the action
of the destruction operator: ciσ |0〉 = 0. Because of the Pauli exclusion
principle and by anti-symmetricity of the wave functions, we have:

{ciσ, cjσ′} = 0(2)

{ciσ, c
†
jσ′} = δijδσσ′ ∀i, j, σ, σ′

2.1. Vagabonding electrons. Now, what could be the hamiltonian
for the hopping process? The reason for the electron hopping is their
overlapping bound state wave functions. The matrix element of such a
tunneling process from one site to another is:

(3) tij ∝ 〈i|j〉 =

∫
d3r φ(~r − ~Ri)

∗φ(~r − ~Rj)

tij in (3) is the probability of an electron on site i to tunnel to site j.
Of course this process occurs also the other way round, and for any
site to any other site of the lattice. We suppose here that no spin flip
can occur during a hopping. The full operator of all these processes is
conveniently written in terms of Wannier operators:

(4) Ht = −
∑
ijσ

tij c†iσcjσ, tii = 0 , tij = tji

The hopping hamiltonian is the sum over all hopping processes: cjσ

destroys an electron on lattice site j with spin σ and c†iσ recreates the
electron on an other site i.

You might wonder about the negative sign we gave to the hopping
hamiltonian (4). However, this sign is just chosen for convenience. In
this model there is the symmetry t → −t.

It is clear that we can neglect hopping between more distant sites in
a first approach. This is because the hydrogen electron wave function
has an exponential tail far from the center, so we can expect the hop-
ping integral (3) to be small for all sites more than one lattice spacing
distant. However, this need not be the case! Consider for example the
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electron not in a spherical s-shell, but in a p- or d-shell. Due to the
anisotropy of these shells, it can even happen that next nearest hoping
is more important than nearest, as figure 2.1 illustrates. In practice
it is often a very good approximation to restrict to nearest neighbor t
and next-nearest t′ or perhaps t′′ hopping.

Figure 2. The hopping integral might be bigger on next
nearest neighbors than on nearest neighbors, if the wave
function of the bound electron is anisotropic.

2.2. Interacting electrons. A very important aspect of the Hubbard
model is the explicit inclusion of electron-electron interaction. The
most important interaction is of course between two electrons on the
same site. Because of the Pauli exclusion principle, there can maxi-
mally be two electrons per site, one with up, the other with down spin.
The electrostatic energy of two intra-site electrons is given by:

(5) U =

∫
d3r1 d3r2 |φ(~r1)|2 e2

|~r1 − ~r2| |φ(~r2)|2

Since coulomb interaction is long range, (5) may diverge if we naively
take the non-interacting electron orbital for φ(~r). Some care must be
taken to normalize this integral properly. (5) is the energy of a doubly
occupied site. So the intra-site interaction hamiltonian is just the sum
over all doubly-occupied sites:

(6) HU = U
∑

i

ni↑ni↓

where niσ = c†iσciσ is the electron number operator for spin σ on site i.
For more realistic models, we should also include nearest and next

nearest coulomb interaction. These are neglected in the Hubbard
model. This in not justified a priori, since coulomb interaction is long
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ranged. However, we may think of the long range interaction being
screened by the electrons.1

Finally, the Hubbard hamiltonian is a sum of the two terms:

(7) H = Ht + HU = −
∑

<i,j>σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓

Despite the simple appearance, the Hubbard model is notoriously
difficult to solve. And surprisingly rich physics is contained in the
model.

To gain some qualitative insight, let us have a look at the two terms
separately. The hopping (itinerant) part is responsible for the band
structure and it is diagonalized by Block-waves. Let us define the
Fourrier transform of the Wannier operators:

(8) c~k =
1√
L

∑
i

ci e−i~ri·~k

where L is the total number of lattice sites. The wave vector ~k lies in
the first Brillouin zone (BZ) of the lattice.

With the help of (8) we can write the hopping hamiltonian (4) in a
diagonal form:

(9) Ht =
∑

~k∈BZ,σ

ε(~k) c†~kσ
c~kσ

In the case of a square lattice and nearest neighbor hopping t only, the
dispersion relation ε is given by

(10) ε(~k) = −t(cos kx + cos ky + . . .)

Because of this simple relation, the model is sometimes called the single
band Hubbard model. If we take next nearest hopping into account, then
the dispersion will be more complicated. We may also forget about the
real space representation of the hopping term and simply postulate a

particular band structure εn(~k).
The eigenstates of the hamiltonian (9) are Bloch waves:

(11) |~k, σ〉 = c†~kσ
|0〉

1Screening itself is an effect of electron correlation, so this point needs some
careful justification.
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with energy ε(~k). The ground state2 is the Fermi sea |FS〉, where up

and down spins are filled up in ~k space up to the fermi energy:

(12) |FS〉 =
∏

ε(~k)<εf

c†~k↑c
†
~k↓ |0〉

It is clear that this Fermi sea is completely uncorrelated. The electrons
do not feel each other and the state has a lot of charge fluctuations, it
is conducting.

Let us now have a look at the interaction part (6) of the hamiltonian.
This part is diagonal in the local basis. If we restrict us to a single
electron per site (half-filled case), then the ground state is given by

(13) |GS〉 =
∏

i

c†iσi
|0〉

where {σi} is a spin configuration. Doubly occupied sites must be
excluded from the ground state, because they lead to higher energy.
Note that this groundstate is highly degenerate (2L times): there are
many spin configurations with the same energy.

3. Mott transition

We see from the above discussion that each term of the Hubbard
hamiltonian (7) is very simple: The hopping part has an itinerant
electron ground state and the interaction part has a localized ground
state. However, the sum of these very simple parts is highly non-trivial
and very difficult to understand quantitatively. But we can be sure
that the two effects (localize, delocalize) will compete with each other.

3.1. Energies of the competing ground states. Let us calculate
the energies of the two competing groundstates found earlier:

Suppose that we are in the half filled case, i.e. same number of
electrons as sites. Let us further suppose for simplicity that the ground
state is non-magnetic, i.e. that there are the same number of up and
down electrons.

2Remember that we are mainly interested in ground state properties since su-
perconductivity is exclusively observed at low temperatures.
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3.1.1. Fermi sea. The hopping energy of the Fermi sea is easy to guess:
Since the Fermi sea is a superposition of Bloch waves, we can sum over
their energy to get the total Energy:

(14) Et = 〈FS|Ht |FS〉 = 2
∑

ε(~k)<εf

ε(~k)

In case of nearest hopping only on a square lattice, Et = −αt. The
numerical factor α being roughly unity.

To find the interaction energy of the Fermi sea, we first have to find
the fraction of doubly occupies sites, since only they contribute. The
Fermi sea is uncorrelated: the probability to find an up spin on a site is
completely independent of the probability to find a down spin. So let
us forget about down spins for a moment, suppose that we have only up
spins in the system. Now, half of the sites are empty and the other half
contain a single up spin (Pauli principle). Since we are interested in
the thermodynamic limit (macroscopic crystal), the fraction of up spins
per site is equal to the probability to find an up spin on a given site.3

Thus, the probability to find an up spin is 1/2. The same argument
applies to the down spins. The probability to find a doubly occupied
site is given by the product of the probability to find down and up
spins: pdoubly = 1/2 · 1/2 = 1/4. Again by the central limit theorem,
this corresponds to the fraction of doubly occupied sites. Finally, the
interaction energy per site is given by: EU = 〈FS|HU |FS〉 = U

4
. The

total Fermi sea energy per site is:

(15) EFS = −αt +
U

4

3.1.2. Localized groundstate. Let us now calculate the energy of the lo-
calized state. The hopping term vanishes in the half filled case, because
hopping would necessarily produce a doubly occupied site. But such a
state is orthogonal to the ground state, thus it vanishes.
|GS〉 is the ground state of the interaction part with no doubly oc-

cupied sites. Its energy vanishes:

(16) EGS = 〈GS|Ht |GS〉+ 〈GS|HU |GS〉 = 0

Suppose we vary the parameters U and t of the Hubbard model.
Experimentally, it is probably difficult to vary U , but the hopping
integral t varies steeply with the lattice spacing, so we may change it
by squeezing the crystal. What is important is varying U/t.

The energies of the two competing ground states are plotted in figure
3 as a function of U . The true ground state at intermediate U is of

3This is called the central limit theorem in mathematics
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course much more complicated. The true ground state is not known
rigorously, some indications come from exact or approximate calcula-
tions on small lattice clusters.4 See [6] for more details.

Energy

U

Uc

−t

0

<FS|H|FS>

<GS|H|GS>

Figure 3. Energy of the Hubbard model in the two
competing ground states as a function of U. At small U,
the conducting Fermi sea is preferred, large U prefers a
localized and insulating ground state (Mott insulator).

Figure 3 gives a qualitative indication that there must be a phase
transition at intermediate U ' Uc = 4tα. The predominant Fermi
sea character changes to a more localized state. This must also be a
metal-insulator transition and it is called a Mott transition.5

4The commonly used techniques are exact diagonalization (up to 4×4 sites) and
quantum monte carlo methods (up to 16× 16 sites).

5This discovery is due to Sir Nevil Francis Mott, who won the Nobel price for his
work on strongly correlated electron systems in 1977, together with P.W. Anderson
and J. van Fleck.
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4. Outlook

In the previous sections we have seen that introducing explicit corre-
lation even in a very simple model leads to interesting new phenomena
like Mott transition. It is believed that these correlations are very im-
portant to other phenomena, like high temperature superconductivity.
For example, the Hubbard model on a square lattice is believed to con-
tain the main physics of cuprate plains in La2CuO4. However, to see
high temperature superconductivity in Hubbard-like models, one has
to go away from half-filling. This field is currently subject to intensive
research in theoretical solid state physics.
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Appendix A. Some second quantization reminders

In section 2 the tight binding model of solids was introduced. I
would like to give here some basic reminders of second quantization
formalism. I want to show you, why anti-commuting operators should
be taken as the creation operators for electrons.

The first step is to write down the definition of the creation operator.
Def.:

|i, σ〉 ≡ c†iσ |0〉 Creation operator(17a)

ciσ ≡ (c†iσ)† Annihilation operator(17b)

ciσ |0〉 ≡ 0 Electron vacuum(17c)

We use now the following two famous experimental results:

(1) Pauli exclusion principle: two electrons cannot sit in the same
quantum state.

(2) Anti-symmetricity of the electronic wave function:
|i, σ; j, σ′〉 = − |j, σ′; i, σ〉

From (1) and (2) we can infer the following relations:

0 = |i, σ; i, σ; φ〉 = (c†iσ)2 |φ〉 ∀ |φ〉(18)

⇒ (c†iσ)2 = 0

c†iσc
†
jσ′ |φ〉 = |i, σ; j, σ′; φ〉 = − |j, σ′; i, σ; φ〉 = −c†jσ′c

†
iσ |φ〉 ∀ |φ〉

(19)

⇒ c†iσc
†
jσ′ + c†jσ′c

†
iσ = {c†iσ, c†jσ′} = 0

⇒ {ciσ, cjσ′} = 0 ∀i, j, σ, σ′
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Of course, the wave function must also be anti-symmetric under the
exchange of electron and holes:

c†iσcjσ′ |φ〉 = c†iσ |hjσ′ ; φ〉 = |eiσ; hjσ′ ; φ〉 ∀i 6= j, σ 6= σ′, |φ〉(20)

= − |hjσ′ ; eiσ; φ〉 = −cjσ′c
†
iσ |φ〉

⇒ {c†iσ, cjσ′} = 0 ∀i 6= j, σ 6= σ′

where |hiσ〉, |eiσ〉 means a hole respectively an electron on site i with
spin σ.

In case of i = j, σ = σ′, (20) should be the identity operator:

c†iσciσ |i, σ; φ〉 = c†iσ |φ〉 = |i, σ; φ〉(21)

ciσc
†
i,σ |φ〉 = ci,σ |i, σ; φ〉 = |φ〉 ∀ |φ〉

⇒ {c†i,σ, ci,σ} = 1 ∀i, σ
This shows indeed that we should use the familiar commutation re-

lation for fermion operators:

{ciσ, cjσ′} = 0(22)

{ci,σ, c
†
j,σ′} = δijδσσ′ ∀i, j, σ, σ′
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Appendix B. Remarks on the low energy effective t-J
model

As we have seen earlier, the one band Hubbard model is written as

(23) H = −t
∑

<i,j>,σ

c†iσcjσ + U
∑

i

ni↑ni↓

Now in real solids, the on-site repulsion U is normally quite large
with respect to the hopping integral t. The limit U À t means that it
costs a lot of energy to have doubly occupied sites on the lattice and, as
a result, we expect them to be highly suppressed in the ground state.
It is possible to (canonically) transform (23) to a low energy effective
hamiltonian which acts in the sub-space of no doubly occupied sites,
and to neglect terms of high order in t/U .

The so-called t-J model, written as

(24) H = −t
∑

<i,j>,σ

Pd c†iσcjσPd + J
∑
<i,j>

~Si · ~Sj

is sometimes referred to as a low energy effective model derived from the
Hubbard model. However, this is rigorously not true, for the following
reasons:

• t-J is not a systematic expansion in t/U of the Hubbard model:
some terms to order t/U are kept while others of the same order
are neglected. (The so-called 3-site hopping term is dropped.
There is a priori no reason why this term should be less impor-
tant than others.)

• The mean values of operators in the t-J model are calculated
with respect to the bare eigenstates. This is not consistent,
since the canonically transformed eigenstates should be taken.

For this reason, the t-J model should rather be understood as an inde-
pendent model from the Hubbard model. For more details see [7].
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