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We use an SU(2) mean-field theory approach with input from variational wave functions of the t-J model to study the photoemission spectra of cuprates in the pseudogap phase. In our model,
the pseudogap state of underdoped cuprates is realized by classical fluctuations of the order parameter between the d-wave superconductor and the staggered-flux state. Spectral functions of the
intermediate and the averaged states are computed and analyzed. We find that the photoemission spectrum shows an asymmetric gap structure interpolating between the superconducting gap
centered at the Fermi energy and the asymmetric staggered-flux gap. Our model predicts that this asymmetry changes sign at the point where the Fermi surface crosses the diagonal (π, 0)-(0, π).

Introduction

‘ An approximate symmetry for lightly doped pro-
jected wavefunctions

A minimal model for cuprate layers - the t-J Hamiltonian:

Ht-J = Pd[−
∑

i,j,σ

tij c
†
i,σcj,σ + J

∑

〈i,j〉
(Si · Sj −

ninj

4
)]Pd .

Consider the local transformation of the fermion doublet ψ† =

(c
†
↑, c↓):

ψ → gψ (1)

where g ∈ SU(2).

The operator S = 1
2c
†
ασαβcβ is invariant under transformation (1).

Therefore, when x → 0 (half filling), the t-J model has a local
SU(2) symmetry [1, 2].

Consider the (variational) wave function

|ϕ〉 = Pd |ϕ0〉

where |ϕ0〉 is an eigenstate of some auxiliary mean-field Hamilto-
nian

HU
MF =

∑

ij

ψ
†
iUijψj − µ

∑

i

ψ
†
iσ3ψi .

At half-filling (µ = 0), the family of mean-field Hamiltonians,
connected by SU(2) rotations,

H̃U
MF [g] = HŨ

MF

where Ũij = g
†
iUijgj, provide identical wavefunctions for the t-J

model. At small doping, the different states are split in energy. By
continuity, the splitting is expected to be small. This provides a
route to construct a host of low-energy states for the lightly doped
t-J model [3].

‘ The variational theory of high-Tc cuprate super-
conductors

The variational approach predicts a d-wave superconductor (SC)
as the most competitive ground state of the doped t-J model on
the square lattice [4, 5]:

USC
jk = −χσ3 + i(−)jx+kx∆ σ1.

The projected d-wave ground state wavefunction and low-lying
quasiparticle (QP) excitations reproduce many experimental ob-
servations in the superconducting state of HTSC (gap symme-
try, SC dome, nodal velocities, spectral weights, QP current, etc.)
[6, 7, 8, 9, 10].

‘ Vortex cores in the underdoped region

In the case of HTSC, conventional U(1) vortices are very costly in
energy (large gap). “Cheap”vortices with staggered-flux (SF) nor-
mal cores may be constructed using a staggered SU(2) rotation
[3]:

USF
jk = g

†
jU

SC
jk gk

and gj = eiπ
4(−)jσ1. The SF is a mean-field state with staggered

magnetic fluxes, φ = 4 arctan(∆/χ), through the plaquettes:

+φ

+φ+φ

−φ

−φ

−φ
USF

jk = −χσ3 − i∆(−)jx+ky

‘ Intermediate states between SF and SC

In general, the SU(2) rotations at every site can be parametrized
by three Euler angles,

g = eiα
2σ3eiθ

2σ1eiϕ
2σ3 .

α is the U(1) phase of the electron. A point on the sphere parame-
terized by (θ, ϕ) represents a particular mean-field state. Stagge-
red rotations θj = θ

2(−1)j interpolate between the SC state (equa-
tor; θ = 0) and the SF state (north and south poles, θ = ±π

2 ). The
vortex is a (half-)hedgehog on this sphere [11, 12].

The Model

We are in interested in the pho-
toemission spectra (ARPES)
for the underdoped region,
when large variations of the or-
der parameter occur. We mo-
del those variations by domains
with constant g and disregard
short-wavelength α and ϕ fluctuations in these domains.

‘ Hamiltonian for a domain

In a given domain of the sample, the effective Hamiltonian is

HMF (∆, θ) =
∑

〈i,j〉
ψ
†
i g
†
i (θ)USC

ij (∆)gj(θ)ψj

− χ′
∑

〈〈i,j〉〉
ψ
†
iσ3ψj − µ

∑

i

ψ
†
iσ3ψi .

with gj = ei(−)j θ
2σ1.

The chemical potential is used to fix the fermion number. An ad-
ditional next-n.n. hopping χ′ (unrotated; χ′ ' −0.3χ) is introduced
on a phenomenological basis (geometry of experimental Fermi
surface; results of exact Gutzwiller projection [9]).

The one-particle spectral function is relevant for ARPES experi-
ments. We compute it for the effective Hamiltonian parameterized
by (∆, θ),

A
(∆θ,θ)
k,ω = −1

π
ImGk(ω + iΓ) .

This (unprojected) model is viewed as an effective model for
projected quasiparticle excitations [8, 13]. Parameters are ta-
ken from variational computations in the t-J model (for t = 3J):
∆0 ' 0.25χ, ∆π/2 ' 0.2χ, χ ' 0.3t at x ' 10% (holedoping).

‘ Averaged Green’s function

In general, one would compute

〈Ak,ω〉 = Z−1
∫

DŨAŨ
k,ωe−βE[Ũ ]

where the free energy E[Ũ ] is flat in directions parameterized by
g, Ũ = g†Ug.

We consider the case:
• restriction to g interpolating between SF and SC states (USC).
• slow spatial variations of the order parameter (domains of con-

stant g).
• sufficiently high temperature such that we can neglect the de-

pendency of the free energy on g (Variational Monte Carlo pre-
dicts εc = ESF − ESC ' 0.02J per site [13]).
• negligible amplitude fluctuations in U (or ∆; the corresponding

energy scale is large, of order T ∗).
In this situation, the averaged spectral function is given by

〈Ak,ω〉 = Z̃−1
∫

d cos θ A
(θ,∆θ)
k,ω
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Abbildung 1: Schema of the different regions of the
Fermi surface. Left: first BZ with SC (- -) and SF (-.-
) Fermi surfaces. Right: four bands which evolve into
one another as θ is increased from 0 (SC) to π/2 (SF).
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Abbildung 2: Schematic evolution of the spectrum
along a cut parallel to the nodal direction, inside the
pocket (through region I in Abbildung 1). From L to R:
sin θ = 0, 1/3, 2/3, 1. Left corresponds to the SC state,
right to the SF state. The SC gap opens on the SC
Fermi surface, the SF gap on the diagonal (0, π)-(π, 0).
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Abbildung 3: Same plot as Abbildung 2, but for a cut
outside the pocket (through region II in Abbildung 1).

‘ Discussion of Abbildung 1: the Fermi surface appears as a
(nearly) gapless arc in region I (depending on the definition of
the effective gap and the QP lifetime). In region II, the staggered-
flux gap and the superconducting gap start to overlap and form
an effective gap which is shifted towards positive energy (vertical
arrows on right plot). The effective gap comes down in energy
as we go towards the antinode in region II. Exactly at the SU(2)-
points on the diagonal (0, π)-(π, 0), the effective gap is symmetric.
Beyond the SU(2)-points (region III), the midgap is shifted below
the Fermi energy.
At the SU(2)-points [more generally, at the SU(2) surface where
µ + 2χ′ cos kx cos ky = 0], the full SU(2) symmetry is intact even
away from half-filling; the spectral functions are independent of θ
[if we neglect the weak dependency ∆(θ)].
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Abbildung 4: left: averaged spectral function at the
Fermi energy, Ak,ω=0. Right: spectral function on cut
a. The SF and SC gaps are washed out by the avera-
ging and an almost gapless arc appears.
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Abbildung 5: left: averaged spectral function on cut b.
The effective gap is shifted to positive energy. Right:
averaged spectral function on cut c. The effective gap
is shifted to negative energy. (Energy units are 2χ '
200 meV. QP lifetime Γ = 0.12χ)

‘ Experimental implications

The most striking prediction of our model, the suppression of in-
tensity due to formation of a staggered-flux gap above the Fermi
energy in the nodal region, is difficult to verify directly in ARPES
experiments, because this effect only appears at positive energy,
around ω ' 100 meV. On the other hand, our more subtle predicti-
on, the combination of superconducting and staggered-flux gaps
into a single asymmetric gap, appearing in the anti-nodal region
of cuprates may well be within current experimental reach. Ho-
wever, it is clear that any energy symmetrization procedure on
experimental data [14] inevitably destroys all such signs in the
spectral function.
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