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Abstract

Frustrated low-dimensional quantum spin systems – such as the
kagome antiferromagnet – can exhibit highly unusual physical properties
at low temperature. In recent years, materials science has managed to
create new spin S = 1/2 kagome quantummagnets with farther-neighbor
exchange interactions. From a theoretical perspective, this is interesting
since – at the classical level – it can lead to non-planar spin orders, and
spontaneous breaking of time-reversal symmetry. In the quantum limit,
exotic chiral spin liquids may emerge in such systems.

Motivated by these developments, we perform an exhaustive projective
symmetry group (PSG) classification of chiral Z2 quantum spin liquids
(QSLs) with fermionic spinons on kagome and triangular lattices. We
use variational Monte Carlo to investigate the energetic competitiveness
of the subset of U(1) phases in extended kagome Heisenberg models, and
we identify some of the classified spin liquids as ground state candidates.
Our theoretical results are relevant to recent experiments.

Motivation and Experiments

Recently investigated model compounds for spin S = 1/2 quantum mag-
netism on the kagome lattice:

•Herbertsmithite (ZnCu3(OH)6Cl2) [4, 5]: Strong first-neighbor J1 ≃
200 K + potentially weak perturbations (DM, J2, etc). Clearly a QSL,
but of controversial nature [gapped Z2, gapless U(1)], both experimen-
tally and numerically [6, 7].

•Kapellasite (polymorph) [8, 9]: No ordering observed (unbroken spin
rot.) down to low temp, but ΘCW = +10 K (!); gapless triplet exci-
tations. Dominant anti-ferro exchange across the hexagon diagonals
(Jd = 16, J1 = −12; J2 = −4 K).

•Haydeeite (Zn 7→Mg) [3]: Ordering TC = 4, Jd = 11, J1 = −38 K;
J2 ≃ 0. Kagome ferromagnet with DM ≃ 0.

• others: Vanadite, Vesignieite, . . .

Heisenberg model describing magnetism in these spin-1/2 materials:

Figure 1: Farther-neighbor exchange interactions
on the kagome lattice

H =
∑

i,j

JijSi · Sj (1)

Phase diagram of classical spin model with interactions of Fig. 1:
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Figure 2: Ternary phase diagrams of classical kagome Heisenberg model within reg-

ular magnetic orders [10]; Jd + |J1|+ |J2| = 1. Left: J1, J2 ≤ 0, Jd ≥ 0 (J1, J2 ferro);
Right: J1, J2, Jd ≥ 0 (all anti-ferro).

Regular q = 0 and
√
3 ×

√
3 are coplanar spin orders; “cuboc-1” and

“cuboc-2” are non-coplanar with 12-site cell, χ = S1 · (S2 × S3) 6= 0.

Figure 3: Classical spin ordering of type cuboc-1 (left) and cuboc-2 (right).

Figure 4: Scalar chirality in cuboc-1 (left) and cuboc-2 (right).

Projective Symmetry Group (PSG)

Spin fractionalization, using “parton construction” [11] for spin-1/2,

2Sa = f
†σaf , (2)

f = (f↑, f↓)T fermionic (Abrikosov) spinon operators, σa are Pauli ma-
trices. Enlarged local Hilbert space: {↑, ↓} → {0, ↑, ↓, ↑↓}, constraint

2Ga = ψ
†σaψ ≡ 0 , (3)

where ψ = (f↑, f
†
↓)
T is a “gauge doublet”. E.g., Gz = n↑+ n↓− 1 ≡ 0.

Fractionalization entails emergent SU(2) gauge symmetry in the en-
larged spinon Hilbert space,

ψ 7→ gψ , (4)

with g ∈ SU(2), leaves the spin S invariant, while G transforms as a
vector. Similarly, f 7→ Uf rotates the spin, leavingG invariant (singlet).

Substituting Eq. (2) into a spin model (1), one still needs to decou-
ple quartic terms, e.g., by path integral/Hubbard-Stratonovich. Saddle
points are quadratic spinon Hamiltonians,

H0 =
∑

i,j

ψ
†
iuijψj + H.c. +

∑

j

λajψ
†
jσaψj , (5)

with λj Lagrange multipliers, matrices uij = u
µ
ijτµ, (τµ) = (i12, σa),

and u
µ
ij ∈ R for singlet spin liquids (u

µ
ij ∈ iR for triplets), and uij = u

†
ji.

The ansatz u = [uij;λj] transforms as

uij 7→ giuijg
†
j (6)

under local SU(2) (gauge) transformations g = ⊗jgj ∈ G.
To impose symmetry (e.g., lattice translation, reflection, etc) on the

effective spinon theory (5), the symmetry group SG must be represented
in the enlarged spinon space. The representation Qx = (gx, x) ∈ G⋊SG
acts on the ansatz as uij 7→ [Qx(u)]ij = gx(i)ux−1(ij)gx(j)

†. It must
respect the group multiplication law up to a subgroup of G, called the
invariant gauge group (IGG):

QxQy = (gxxgyx
−1, xy) = geQxy , (7)

with ge = (g, e) ∈ IGG, e = id in SG. Global signs IGG = Z2 are always
possible (and are used here), while larger subgroups constrain the spinon
theory.

Two representations Q(1) and Q(2) of SG are equivalent, if there is a
pure gauge ge = (g, e) relating them:

Q(1) ∼ Q(2) ⇔ ∃ ge s.t. Q(1) = geQ
(2)g

†
e . (8)

The number of inequivalent gauge representations of a lattice space
group (translation + point group) is finite and discrete. These represen-
tation classes constitute a classification of fractionalized quantum spin
liquids. They are called algebraic PSG.

In chiral spin liquids (CSLs), we want to impose lattice symmetries
up to time-reversal. That is, SG (e.g., for kagome lattice) is generated
by

SG = {Tx̂, Tŷ, σΘτσ, RΘτR} , (9)

where Tx̂,ŷ are translations, and the point group generators R and σ
are defined in Fig. 4. The time-reversal signatures τσ, τR = 0, 1 specify
broken generators. τσ, τR = 0 corresponds to fully symmetric QSLs;
τσ = 1, τR = 0 breaks all reflections (i.e., Kalmayer-Laughlin CSLs);
The cases τR = 1 have the symmetry of the two cuboc states shown in
Figs. 3 and 4, leading to staggered flux CSL phases.

Anti-unitary time reversal Θ is chosen to act in spinon space as
Θ : ψ 7→ ψ∗. For the ansatz, we therefore have Θ : u 7→ −u (additional
gauge rep. gΘ is irrelevant in the case of chiral spin liquids).

Imposing symmetry on an ansatz u within an algebraic PSG repre-
sentation Q translates to

u = (−)τxQx(u) , (10)

for all generators x in SG. For symmetries x leaving lattice links invariant
(reflections), Eq. (10) is a constraint on u. Otherwise (e.g., for transla-
tions or rotations), it can be used to propagate uij on a given link to
the entire lattice. Q and τ therefore provide a systematic and exhaustive
construction of spinon theories H0 that conserve lattice symmetries up
to time reversal. They are called invariant PSG.

From a spinon theory Eq. (5), microscopic (chiral) spin liquid wave
function are constructed by Gutzwiller projection,

|ψ〉 =
∏

j

(nj↑ − nj↓)
2 |ψ0(u)〉 , (11)

where |ψ0(u)〉 is the ground state ofH0. Properties of |ψ〉 (e.g., energies)
can be computed on large lattice clusters using variational Monte Carlo
[12]. Optimized QSL energies are compared with those of ordered Huse-
Elser states [13].

Results

We find 10 algebraic PSG representation classes for kagome, and
14 for triangular lattice: gx̂(x, y) = 12, gŷ(x, y) = (ε)x12, gσ(x, y) =

(ε)xygσ, gR(x, y) = (ε)xy+y(y+1)/2gR, with ε = ±1 (cell doubling) and
gσ, gR given in Tables 1 and 2.

No. gσ gR ǫσ ǫRσ ǫR sym

1 12 12 + + + SU(2)
2 iσ3 12 − − + U(1)
3 12 iσ3 + − − U(1)
4 iσ3 iσ3 − + − U(1)
5 iσ2 iσ3 − − − Z2

Table 1: Point group PSG representations
for kagome and triangular lattice.

No. gσ gR ǫσ ǫRσ ǫR sym

6 iσ2 a − − + Z2
7 iσ2 b − − − Z2

Table 2: Additional PSG representations
for triangular lattice.
a = exp(iσ3π/3) and b = exp(iσ3π/6).

For the algebraic PSG in Tables 1 and 2, and all signatures τ in (9),
we construct corresponding chiral spinon theories and ansätze for first
three neighbors. (details in [2])

The spin model (1) on the kagome lattice is investigated, using vari-
ational U(1) CSL, and correlated Néel states.
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Figure 5: Ternary phase diagrams of quantum kagome Heisenberg model within
Gutzwiller projected symmetric and chiral spin liquids; Jd + |J1| + |J2| = 1. Left:
J1, J2 ≤ 0, Jd ≥ 0 (J1, J2 ferro); Right: J1, J2, Jd ≥ 0 (all anti-ferro).

Fig. 5 shows that dominant Jd quickly favors a quasi-one-dimensional
phase when J1 ∼ J2. Otherwise, we find gapless CSLs A and B in this
region (spinon Fermi surfaces). Fig. 6 displays the corresponding static
spin structure factors, S(k) =

∑
ij〈Si · Sj〉eik·rij.

(a) (c)(b)

Figure 6: Spin structure factors in (a) CSL A, (b) quasi-1D phase, and (c) CSL B on
the kagome lattice.

Kapellasite [9] lies in the parameter region of gapless CSL A in Fig. 5,
inelastic neutron data on powder samples [8] is consistent with S(k) in
Fig. 6(a). Haydeeite is in the ferro region [3].

(a) (b) (c)

Figure 7: Spin structure factors in (a) FS QSL (No. 1 in Tab. 1, ε = +1, τ = 0), (b)
Dirac QSL (No. 1 in Tab. 1, ε = −1, τ = 0), and (c) CSL C (No. 1 in Tab. 1, ε = −1,
τσ = 1, τR = 0), first-neighbor ansätze.

Conclusion

Motivated by non-planar magnetic orders in classical Heisenberg models
on extended triangular and kagome lattices, we systematically classify
chiral spin liquids within the fermionic parton construction. The projec-
tive symmetry group is discussed in detail, and we extend it to chiral
spin liquids. Variational quantum phase diagrams for the kagome lat-
tice are calculated, and physical properties such as spectral functions are
discussed. Our theoretical results can explain the exotic magnetism in
Kapellasite, and the kagome ferromagnet Haydeeite.
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