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Abstract

We propose novel gapless quantum spin liquid (QSL) states that may ex-
plain the phenomenology of recently discovered experimental spin liquid
candidates in spin S = 1/2 and S = 1 layered triangular lattice com-
pounds. These states have a number of theoretically very interesting
and appealing properties. We propose microscopic Heisenberg models
with ring-exchange terms where these new phases can be realized as
ground states. Using variational Monte Carlo calculations, we compare
the energetics of a wide range of correlated spin wave functions. We
find that our exotic spin states are indeed stabilized in some parameter
range. For the organic compounds (S = 1/2), the parameters are real-
istic, and our theoretical scenario therefore presents a serious possibility.

Motivation

Recent experimental discoveries of the quantum spin liquid can-
didate Ba3NiSb2O9 [3], and the organic compounds κ-(BEDT-
TTF)2Cu2(CN)3 [4] and EtMe3Sb[Pd(dmit)2]2 [5]. Key facts are

• Layered 2d structure of isotropic triangular geometry

•No ordering transition observed down to 0.1 K and below

• Spin carried by Nickel is effective S = 1, and by Copper is S = 1/2

•AF Mott insulators: J ≃ 250 K (organics), ΘCW ≃ −80 K (Ni)

• Finite spin susceptibility χ0, and linear CV = γT at low T

•Weak site disorder

• Powder samples only, no large crystals so far

⇒ Quite robust experimental indications that two-dimensional gapless
quantum spin liquid states are realized in these materials at low tem-
perature.

Spin fractionalization

We use a “parton construction” [6] with fermionic spinons to fraction-
alize the quantum spin operators. For spin 1/2 it is

Sa =
1

2
f†σaf , (1)

with f = (f↑, f↓)T . The emergent gauge structure is SU(2).

For spin S = 1, at least three spinons are needed (3d rep); we use

S = −if† ∧ f , (2)

with f = (fx, fy, fz)
T . fz = if0 is a “nematic” quasiparticle, while

f↑,↓ = (fx ∓ ify)/
√
2 carry spin. Gauge structure is U(1)⋊Z2.

Possible QSL scenarios at the mean-field level are

1. The “mother” of gapless QSLs, the U(1) state with spinon Fermi sea:

H0 =
∑
ijα tijf

†
iαfjα

⇒ emergent U(1) gauge Boson (photon)

2. Pairing instability, Anderson-Higgs mechanism; Z2 spin liquids:

H0 =
∑
ij
∑
α tijf

†
iαfjα +

∑
αβ ∆

αβ
ij fiαfjβ + h.c.

⇒ gauge Boson is gapped and has no effect at low energy.

3. Ordering instabilities (SDW) of the U(1) QSL, spinon confinement:

H0 =
∑
ijα tijf

†
iαfjα − h

∑
jαβ n̂jαn̂

∗
jβf

†
jαfjβ

Space group, time reversal, and spin rotation symmetries may be broken
or unbroken in these states.

⇒ Are there realistic microscopic spin models that exhibit deconfined
spinon quasiparticles at low energy?

Construction of microscopic variational spin states:

• Fermionic wave functions [7]

|ψ〉 = Pd|ψ0(tij,∆ij, . . .)〉 , (3)

where |ψ0〉 is the ground state of a quadratic spinon HamiltonianH0,
and Pd =

∏
j nj(nj − 2) the Gutziller projector to the physical spin

space; n =
∑
α f

†
αfα.

•Huse-Elser [8] type construction

|ψ〉 = exp{
∑

ij

JijSzi Szj +Kij(Szi Szj )2}
∏

k

|αk〉 . (4)

⇒ Variational Monte Carlo allows evaluation of expectation values in
theses highly correlated wave functions to an arbitrary precision on large
clusters (here up to 103 sites).

Spin 1/2

The ring-exchange model (Pij = 2Si · Sj + 1/2)

H =
∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj +K

∑

〈i,j,k,l〉
Pijkl + h.c. (5)

on the triangular lattice for J2 = 0 is known to exhibit 120◦ AFM
order when K . 0.1 [9]. For K & 0.3, it supports a U(1) QSL,

H0 =
∑
ijσ f

†
iσfjσ, a half-filled Fermi sea of spinons [10].

⇒ What about intermediate values of K? What is the effect of next-
neighbor J2 > 0 ?

We consider variationally all nearest-neighbor singlet and triplet pairing
instabilities: s-, px+ipy, dx+idy, f -wave (ϕ = nπ/3; n = 0, 1, 2, 3),

nodal d-wave (d2x− d2y), and deformations; finite-momentum pairing
(“amperean” state [11]). Furthermore, we check all known planar orders
(120◦ AFM, columnar, spiral).

Figure 1: Rotation invariant nearest-neighbor parings ∆σσ̄ij

Figure 2: Variational phase diagram of model (5). A pure d+id
pairing state w. quadratic bands touching is stabilized atK ≃ 0.13.

⇒ We find a novel Z2 QSL state with quadratic bands touching (QBT)
at k = 0 as ∆ → ∞, stabilized around K ≃ 0.13, J2 ≃ 0.
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Figure 3: Optimal α = arctan∆, for d+id and d-wave at J2 = 0.

Conclusion

Described QBT state has several appealing properties, and it provides
a new explanation for the physics of organic QSL candidate materials:

• Lowest energy among wide range of states in a realistic spin model

•No broken symmetries (T-rev, S-rot, lattice)

• Z2 state, so controlled weak-coupling calculations are possible, i.e. no
technical issues due to strong gauge fluctuations

•Quadratic band touching of fermionic spinons, constant DOS

•Marginal perturbations may open a small gap (seen in thermal con-
ductivity measurements in κ-ET)

Spin 1

Fractionalization into three spinons (2) leads to new and surprising pos-
sibilities. Pairing instabilities of the U(1) Fermi sea QSL are

• Singlet (equal flavor) pairing: ∆xx = ∆yy = ∆zz; p+ip-wave (fully
gapped) and f -wave (nodal) Z2 QSLs.

•Triplet: ∆xy = −∆yx, ∆za = 0; s- and d+id-wave. The gauge boson
is “higgsed”, but fz spinon must remain unpaired in the presence of
lattice symmetries: emergence of a free spinon Fermi surface!

While the first option leads to conventional topological or nodal QSL
states, the second represents a novel class: Z2 QSLs in a Higgs phase and
exhibiting an extended Fermi surface; this is impossible for S = 1/2.
⇒ Is this exotic phase stable in a microscopic Heisenberg model?

1st trial: Bilin-biquad. Heisenberg model with single-ion anisotropy

HKD =
∑

〈i,j〉
Si · Sj +K(Si · Sj)2 +D

∑

j

S2zj , (6)

for D = 0 exhibits Néel (K < 1), and spin nematic (K > 1) order [12].
What happens at finite D?

Figure 4: Variational energies per site in model (6) atD = −0.4.
AFM states are realized for K < 1, quadrupolar states for K > 1.

⇒ Tsunetsugu-Arikawa three-sublattice ordered states [13] at D = 0
are not destroyed, just deformed for D 6= 0 (|D| < 1.5).

Next, we focus on the SU(3) symmetric point K = 1 and D = 0. For
spin 1, the swap operator is Pij = Si · Sj + (Si · Sj)2 − 1. A natural
ring-exchange model to consider is

Hα = cosα
∑

〈i,j〉
Pij + sinα

∑

〈i,j,k〉
Pijk + h.c. , (7)

where 〈i, j, k〉 are elementary triangles, and Pijk = PijPjk.
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⇒ The d+ id fz-Fermi surface QSL is the best variational state at
α ≃ π/4. For α & 0.3π, SU(3) is spontaneously broken to SU(2) and
a Néel order is realized.

Conclusion

It is difficult to stabilize spin-1 QSLs in SU(2) Heisenberg models on
the triangular lattice. Strong model deformations are necessary.
⇒ More experiments are necessary to challenge/refine the result on the
Nickel compound [3]. Our results on the previously unexplored SU(3)
model (7) may find interesting applications in systems of cold atoms.
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