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Abstract

We propose novel gapless quantum spin liquid (QSL) states that may ex-
plain the phenomenology of recently discovered experimental spin liquid
candidates in spin S = 1/2 and S = 1 layered triangular lattice com-
pounds. These states have a number of theoretically very interesting
and appealing properties. We propose microscopic Heisenberg models
with ring-exchange terms where these new phases can be realized as
oround states. Using variational Monte Carlo calculations, we compare
the energetics of a wide range of correlated spin wave functions. We
find that our exotic spin states are indeed stabilized in some parameter
range. For the organic compounds (S = 1/2), the parameters are real-
istic, and our theoretical scenario therefore presents a serious possibility:.

Recent experimental discoveries of the quantum spin liquid can-
didate BagNiShoOg (3], and the organic compounds k-(BEDT-
TTF)9Cuo(CN)s 4] and EtMesSb[Pd(dmit)s]y [5]. Key facts are

e Layered 2d structure of isotropic triangular geometry

e No ordering transition observed down to 0.1 K and below

e Spin carried by Nickel is effective S = 1, and by Copper is S = 1/2
e AF Mott insulators: J ~ 250 K (organics), ©cyw =~ —80 K (Ni)

e Finite spin susceptibility xg, and linear Cy = ~T" at low T

e Weak site disorder

e Powder samples only, no large crystals so far

= QQuite robust experimental indications that two-dimensional gapless
quantum spin liquid states are realized in these materials at low tem-
perature.

Spin fractionalization

We use a “parton construction” [6] with fermionic spinons to fraction-
alize the quantum spin operators. For spin 1/2 it is

Su=3/T0uf. (1)

with f = (fs, f i)T. The emergent gauge structure is SU(2).

For spin § = 1, at least three spinons are needed (3d rep); we use

S=—iffAf, 2)

with f = (fz, fy, 1. f. = ifyis a “nematic” quasiparticle, while
fr1=0zF ify)/V/2 carry spin. Gauge structure is U(1)xZo.

Possible (QSL scenarios at the mean-field level are

1. The “mother” of gapless QSLs, the U(1) state with spinon Fermi sea:
Hy =2 ija tif) fia
= emergent U(1) gauge Boson (photon)

2. Pairing instability, Anderson-Higgs mechanism; Zs spin liquids:

Hy= Y3 Yo tiififia + Sas A%‘ﬁfmfjﬁ +h.e.

= gauge Boson is gapped and has no effect at low energy:.

3. Ordering instabilities (SDW) of the U(1) QSL, spinon confinement:
_ I L
Hy =2 ijatijfiafia = D2 jap Mjagf }L@fjﬁ
Space group, time reversal, and spin rotation symmetries may be broken

or unbroken in these states.

= Are there realistic microscopic spin models that exhibit deconfined
spinon quasiparticles at low energy?

Construction of microscopic variational spin states:

e Fermionic wave functions |7]

) = Pylvoltij, Dij, - --)) (3)
where |1)p) is the ground state of a quadratic spinon Hamiltonian Hy),
and By =], nj(n; —2) the Gutziller projector to the physical spin
space; n = ) f;ﬂfoé.

e Huse-Elser (8] type construction
) = exp{)  TijSPSF+ Kij(SFSHIPH ] [ lew) - (4)

= Variational Monte Carlo allows evaluation of expectation values in
theses highly correlated wave functions to an arbitrary precision on large
clusters (here up to 103 sites).

The ring-exchange model (P;; = 2S; - S; +1/2)

H = ZS - S+ Jo Z S;-S;+ K Z By + hec (5)

(4,4,k,0)

on the triangular lattice for Jo = 0 is known to exhibit 120° AFM
order when K < 0.1 [9]. For K 2 0.3, it supports a U(1) QSL,

Ho =2 iio f;ra fjo, a half-filled Fermi sea of spinons [10].

= What about intermediate values of K7 What is the effect of next-
neighbor Jy > 0 7

We consider variationally all nearest-neighbor singlet and triplet pairing
instabilities: s-, pg+ipy, dy+idy, f-wave (¢ = nmw/3; n = 0,1,2,3),
nodal d-wave (d2 —d%]), and deformations; finite-momentum pairing

(“amperean” state [11]). Furthermore, we check all known planar orders
(120° AFM, columnar, spiral).
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FIGURE 2: Variational phase diagram of model (5). A pure d+id
pairing state w. quadratic bands touching is stabilized at K ~ 0.13.

= We find a novel Z9 QSL state with quadratic bands touching (QBT)
at k =0 as A — oo, stabilized around K ~ 0.13, Jo ~ 0.
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FIGURE 3: Optimal o = arctan A, for d+2d and d-wave at Jo = 0.

Conclusion

Described QBT state has several appealing properties, and it provides
a new explanation for the physics of organic (QSL candidate materials:

e Lowest energy among wide range of states in a realistic spin model
e No broken symmetries (T-rev, S-rot, lattice)

e 7/ state, so controlled weak-coupling calculations are possible, i.e. no
technical issues due to strong gauge fluctuations

e (Quadratic band touching of fermionic spinons, constant DOS

e Marginal perturbations may open a small gap (seen in thermal con-
ductivity measurements in x-ET)

Fractionalization into three spinons (2) leads to new and surprising pos-
sibilities. Pairing instabilities of the U(1) Fermi sea QSL are

e Singlet (equal flavor) pairing: A* = AYY = A**: p+ip-wave (fully
gapped) and f-wave (nodal) Zo QSLs.

o Triplet: A" = —AYY A*? = 0: s- and d+id-wave. The gauge boson
is “higgsed”, but f, spinon must remain unpaired in the presence of
lattice symmetries: emergence of a free spinon Fermi surface!

While the first option leads to conventional topological or nodal QSL

states, the second represents a novel class: Zo (QSLs in a Higgs phase and

exhibiting an extended Fermi surface; this is impossible for S = 1/2.
= Is this exotic phase stable in a microscopic Heisenberg model?

15 trial: Bilin-biquad. Heisenberg model with single-ion anisotropy
Higp=» 8;-8;+K(S;-8;)°+D> 52, (6)
(i,9) |

for D = 0 exhibits Néel (K < 1), and spin nematic (K > 1) order [12].
What happens at finite D7
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FIGURE 4: Variational energies per site in model (6) at D = —0.4.
AFM states are realized for K < 1, quadrupolar states for KX > 1.

= Tsunetsugu-Arikawa three-sublattice ordered states [13] at D = 0
are not destroyed, just deformed for D # 0 (|D| < 1.5).

Next, we focus on the SU(3) symmetric point K =1 and D = 0. For
spin 1, the swap operator is P; = S; - S; + (S; - Sj)2 — 1. A natural
ring-exchange model to consider is

Hy = Cosozzpij+sinoz Z Py +hee., (7)
(i,5) (i,5,k)

where (i, j, k) are elementary triangles, and P; ;. = B Pjp.

d+i1d
o /A\
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= The d+1id f,-Fermi surface (QSL is the best variational state at
a ~ /4. For a 2 0.3m, SU(3) is spontaneously broken to SU(2) and
a Néel order is realized.

Conclusion

[t is difficult to stabilize spin-1 QSLs in SU(2) Heisenberg models on
the triangular lattice. Strong model deformations are necessary.

= More experiments are necessary to challenge/refine the result on the
Nickel compound [3]. Our results on the previously unexplored SU(3)
model (7) may find interesting applications in systems of cold atoms.
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