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I analyze and comment on the following paper using bosonization technique.

[Schulz PRB 1986, Phase diagrams and correlations functions for quantum spin

chains of arbitrary spin quantum number]

I. GOAL AND SETTING OF THE PAPER

At the time when the paper was written, there was considerable discussions going on

about the physical differences between integer and half-integer spin chains. Three years

earlier, Haldane2 had predicted gapless excitations for half-integer Heisenberg spin chains,

while integer spins chains should only have gapped spinon excitations on top of a singlet

ground state. Haldane used a mapping of the spin chain to the O(3) non-linear sigma model

and semi-classical quantization of the field theory. His arguments may have been regarded

by many as rather heuristic and speculative; Schulz’ paper has to be understood in the

context of this ongoing controversy. It should be noted that many of Haldanes predictions

were later found to be consistent with experiments on one-dimensional spin compounds.

The goal of the Schulz’ paper is to attack the Heisenberg spin-S chain with a different ap-

proach than Haldane. With his approach, Schulz proposes to analyze the phase diagram and

the correlation functions in detail. He claims that his findings confirm Haldanes predictions.

The idea of the Schulz’ approach is to represent a spin S = n
2

chain by a n-legged spin-1
2

ladder. One can then attack the ladder problem starting from the single chain (i.e. supposing

weak interchain coupling), using knowledge and techniques appropriate for spin-1/2 chains.

First, Schulz applies the procedure to the spin-1 chain and discusses its phase diagram. He

then generalizes to higher spins and discusses the correlation functions and phase diagrams.

II. SOME TECHNICAL DETAILS OF SECTION II

In the following I will discuss some of Schulz’ results for the spin-1 chain. The Hamiltonian

is given by

H = −
∑

i

[Sx
i Sx

i+1 + Sy
i Sy

i+1 + JzS
z
i S

z
i+1] + D

∑
i

(Sz
i )

2 (1)
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I will now rederive the bosonized expression for (1) given in Schulz’ formulae (2.7) and

(2.8). I first make the replacement Si → σi + τi. The resulting Hamiltonian in terms of the

spin-1/2 operators σ and τ is:

H → H ′ = −Hσ(Jz)−Hτ (Jz)−H± + Hz(Jz, D) + const. (2)

where

Hσ(Jz) =
∑

i

1

2
(σ+

i σ−i+1 + σ−i σ+
i+1) + Jz σz

i σ
z
i+1 (3a)

H± =
∑

i

σ+
i τ−i+1 + τ+

i σ−i+1 (3b)

Hz(Jz, D) =
∑

i

2D σz
i τ

z
i − Jz(σ

z
i τ

z
i+1 + τ z

i σz
i+1) (3c)

To bring the Hamiltonian in a more conventional form, I stagger the x–y components of

the spins by replacing σ±i → (−1)iσ±i and τ±i → (−1)iτ±i . After this transformation, the

Hamiltonian is

H ′ = Hσ(−Jz) + Hτ (−Jz) + H± + Hz(Jz, D) (4)

Hσ and Hτ are conventional spin-1/2 chains. I will not bother to rederive the standard

expressions for the bosonized spin-1/2 chain. One has just to be aware of the fact that Schulz

uses the non-hermitian string operator when fermionizing the chain by Jordan-Wigner in

his Eq. (2.1): σ+
i = a†i exp(iπ

∑
j<i a

†
jaj).

The expressions for the spins in terms of the bosonic fields can be found in Ref. 3, p. 167–

168:6

σz (x) = − 1

π
∂φ1 (x) +

(−1)x

π
cos (2φ1 (x)) (5a)

σ+ (x) =
1

2π

{
(−1)x e−iθ1(x) + e−iθ1(x)−2iφ1(x)

}
(5b)

and similar for spin τ with φ1, θ1 replaced by φ2, θ2, respectively.7 Using formulae (5), I
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write the total spin to recover expressions (2.9) and (2.10) of Schulz:

S+(x) = (−1)x (
σ+(x) + τ+(x)

)

=
1

2π

{
e−iθ1 + e−iθ2 + (−1)x (

e−iθ1−2iφ1 + e−iθ2−2iφ2
)}

=
1

π

{
e−iX1/

√
2 cos

(
X2/

√
2
)

+ (−1)x e−i(X1/
√

2+
√

2ψ1) cos
(
X2/

√
2 +

√
2ψ2

)}
(6a)

Sz(x) = σz(x) + τ z(x)

= − 1

π
∂φ1 +

(−1)x

π
cos (2φ1) +− 1

π
∂φ2 +

(−1)x

π
cos (2φ2)

= −
√

2

π
∂ψ1 + (−1)x 2

π
cos

(√
2ψ1

)
cos

(√
2ψ2

)
(6b)

where the following replacements have been made8

X1 (x) =
θ1 (x) + θ2 (x)√

2
, X2 (x) =

θ1 (x)− θ2 (x)√
2

ψ1 (x) =
φ1 (x) + φ2 (x)√

2
, ψ2 (x) =

φ1 (x)− φ2 (x)√
2

.

(7)

I can now immediately write down the bosonized Hamiltonian for Hσ(−Jz) and Hτ (−Jz)

in (4). The Luttinger parameters for the weakly anisotropic Heisenberg-1/2-chain can be

found e.g. in Ref. 3, p. 166:

uK = 1

u

K
= 1− 4Jz

π
.

(8)

Using the replacement (7), the Luttinger part of the Hamiltonian is:

HLutt = Hσ + Hτ

=
1

2π

∫
dx

{
(∂θ1)

2 + (∂θ2)
2 + (1− 4Jz

π
)
(
(∂φ1)

2 + (∂φ2)
2)

}

=
1

2π

∫
dx

{
(∂X1)

2 + (∂X2)
2 + (1− 4Jz

π
)
(
(∂ψ1)

2 + (∂ψ2)
2)

}
.

(9)

Terms like cos (4φi) are neglected by Schulz, because they are less relevant than the other

perturbations to the Luttinger Hamiltonian.

For the expression of Hz, some care has to be taken in the continuous limit, regarding a
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sign change:

Hz =
∑

i

2D σz
i τ

z
i − Jz

(
σz

i τ
z
i+1 + τ z

i σz
i+1

)

→ 1

π2

∫
dx {2D (−∂φ1(x) + (−1)x cos 2φ1(x)) (−∂φ2(x) + (−1)x cos 2φ2(x))

− Jz

(− ∂φ1(x) + (−1)x cos 2φ1(x)
) (−∂φ2(x + 1) + (−1)x+1 cos 2φ2(x + 1)

)

+ Jz

(−∂φ1(x + 1) + (−1)x+1 cos 2φ1(x + 1)
) (− ∂φ2(x) + (−1)x cos 2φ2(x)

)}

' 2

π2

∫
dx {(D − Jz)∂φ1∂φ2 + (D + Jz) cos 2φ1 cos 2φ2}

=
1

π2

∫
dx {(D − Jz)

(
(∂ψ1)

2 − (∂ψ2)
2
)

+ (D + Jz)
(
cos

√
8ψ1 + cos

√
8ψ2

)
}

(10)

Finally, H± is given by

H± =
∑

i

σ+
i τ−i+1 + τ+

i σ−i+1

→ 1

(2π)2

∫
dx {((−1)xe−iθ1 + e−iθ1−2iφ1

) (
(−1)x+1e−iθ2 + e−iθ2−2iφ2

)

+
(
(−1)xe−iθ2 + e−iθ2−2iφ2

) (
(−1)x+1e−iθ1 + e−iθ1−2iφ1

)}

' 1

(2π)2

∫
dx {−e−i(θ1−θ2) + e−i(θ1−θ2)−2i(φ1−φ2) − ei(θ1−θ2) + ei(θ1−θ2)−2i(φ1−φ2)}

=
2

(2π)2

∫
dx {− cos (θ1 − θ2) + cos (θ1 − θ2 + 2(φ1 − φ2))}

= − 1

2π2

∫
dx {cos

√
2X2 − cos

(√
2X2 +

√
8ψ2

)
} .

(11)

I have neglected rapidly oscillating terms in (10) and (11). The last term in the final

expression of (11) is irrelevant and can be neglected. The total Hamiltonian can now be

written as9

H ′ → 1

2π

∫
dx

{
(∂X1)

2 + (1 + 2(D − 3Jz)/π) (∂ψ1)
2
}

+
1

π2

∫
dx cos

√
8ψ1

+
1

2π

∫
dx

{
(∂X2)

2 + (1− 2(D + Jz)/π) (∂ψ2)
2
}

+
1

π2

∫
dx cos

√
8ψ2

− 1

2π2

∫
dx cos

√
2X2

= H1[X1, ψ1] + H2[X2, ψ2] .

(12)

The representation of a spin-1 by two spin-1/2 is of course not exact. The space of two

spin-1/2 is spanned by three triplet and one singlet state. The triplet sector can be mapped
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to the spin-1 space, so we neglected the singlet state. If the singlet state is sufficiently high in

energy, it can indeed be neglected when considering ground state properties. Following the

argumentation of Ref. 3, p. 190, a singlet-state on one site would annihilate the Heisenberg

part of (1) at this site and thus cost the energy of order 1 with respect to the triplet states.

This is very high in energy. It follows that the ground state must be composed of triplet

states on each rung and the spin-1/2 representation is a reasonable approximation.

III. FINDINGS OF SECTION II

The main result of Section II is found in the discussion of the phase diagram of the

spin-1 chain. First, Schulz observes that the Hamiltonian decouples to lowest order in the

couplings into two independent and commuting parts H1[X1, ψ1] and H2[X2, ψ2], Eq. (12).

Note that H2 is quite a peculiar field theory, since it contains the integrated momentum:

cos
(√

2X2 (x)
)

= cos
(√

2 π
∫ x

dx′ Π (x′)
)
. Schulz calls this a vertex or disorder operator,

and distinguishes the phases depending if it is relevant or not. The main point is that the

spectrum of H2 is always massive, since at least one of the the mass generating operators

cos
(√

2X2

)
and cos

(√
8ψ2

)
is always relevant (scaling dimension < 2). On the other hand,

H1 has 3 phases. For 3Jz − D > π/2, the kinetic term in H1 has a negative coefficient,

and the field theory is ill-defined. Schulz conjectures that this phase should correspond to

ferromagnetic order in the lattice problem. Second, there is a stripe of massless phase, where

the potential term of H1 is irrelevant. Finally, there is the massive phase of H1 where the

potential term is relevant.

The consequence of the previous observations for the diverse correlation functions is non-

trivial, since the spin-1 operators are complicated superpositions of Xi and ψi (see Eqs. (6)).

Schulz considers three correlation functions:

G⊥(x) = 〈S+(x)S−(0)〉 (13a)

G⊥2(x) = 〈S+(x)2S−(0)2〉 (13b)

Gz(x) = 〈Sz(x)Sz(0)〉 (13c)

Schulz finds a anti-ferro region where the staggered part of Gz has long-range order (H1

massive, H2 ordered); a singlet region, where all correlation functions decay exponentially

(H1 massive, H2 disordered); the XY1-phase where the in-plain correlations G⊥ and G⊥2



6

decay algebraically (H1 massless, H2 disordered); the XY2 phase where G⊥ vanishes expo-

nentially while G2⊥ has long range algebraic dependency (H1 massless, H2 ordered).

Instead of repeating all arguments of Schulz, let me just point out one interesting feature

in the phase diagram. In the region XY2, only correlations (S+)2 have algebraic decay, while

correlations in S+ decay exponentially. The physical reason for this is discussed by Schulz:

The XY2 phase can only be reached with sufficiently large negative D. In the original spin-1

Hamiltonian (1), a negative D means that the singlet state Sz = 0 is frozen out, and the

remaining Hamiltonian is effectively a spin-1/2 chain (massless). For this effective spin-1/2

problem, the raising operator (S+)2 is used, which is the reason for the algebraic decay of

the correlation function G⊥2.

IV. SECTION III

The goal of Section III is to generalize the previous procedure to spin-S chains. Hopefully,

one would find the phase diagram of spin chains with arbitrary spin.

Like before, the spin is decomposed into 2S half-spins at every site:

S =
2S∑

n=1

σn (14)

The resulting spin-1/2 ladder is bosonized in a similar manner as previously. The resulting

field theory contains 2S coupled boson fields φi. The Hamiltonian Schulz (3.4) is analogue

to the spin-1 case:

H =
1

2π

∫
dx {(πΠ)2 + [1− 2(D + J)/π] (∂φ)2 + 2(D − J)/π ∂φT M̄∂φ}

+
1

π2

∑
i<j

∫
dx {µ1 cos (2 [φi + φj]) + µ2 cos (2 [φi − φj]) + µ3 cos (θi − θj)}

(15)

where M̄ is a matrix with all entries unity. The derivative term can be decoupled by means

of the following unitary transformation:

φ = Uψ (16)
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where

Umn =





1/
√

2S , n = 1

1/
√

(n− 1)n , m < n > 1

−
√

(n− 1)/n ,m = n > 1

0 ,m > n > 1 .

(17)

A. Proof

Let me first show that the transformation is unitary:

Apq = (UT U)pq =
∑
m

UmpUmq (18)

A11 =
∑
m

U2
m1 =

1

2S

∑
1 = 1

App, p>1 =
∑
m

U2
mp =

∑
m<p

1

(p− 1)p
+

p− 1

p
= 1

Apq, p<q =
∑
m

UmpUmq =
∑
m<p

UmpUmq + UppUpq

=
1√

(p− 1)p

1√
(q − 1)q

∑
m<p

1−
√

p− 1

p

1√
(q − 1)q

= 0

(19)

which shows unitarity. Finally, I need to show that M̄ is diagonalized:

(UT M̄U)pq =
∑
n,m

UnpMnmUmq =
∑

n

Unp

∑
m

Umq = fpfq . (20)

Clearly, I have

fq =
∑

n

Unq =





1√
2S

∑
1 =

√
2S , q = 1

∑
n<q

1√
q(q−1)

−
√

q−1
q

= 0 , q > 1
(21)

which implies that

(UT M̄U)pq = 2S δp1 δpq (22)

and concludes the proof.

The resulting Hamiltonian can be separated, similar to the spin-1 case, into a sine-Gordon

system H1 for ψ1 = 1
2S

∑
n φn and an order/disorder Hamiltonian H2 for ψn, n > 1.
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A draft of the spin-S phase diagram is thus very similar to the spin-1 case, containing

the 5 regions:

• F: inapplicability of continuum limit.

• XY1: massless in-plain correlations.

• XY2: massless in-plain correlations to order 2S.

• AF: massless Neel-order.

• S: all modes are massive; singlet phase.

However, the sine-Gordon-like term µ1 contains all fields:

H int
1 ∝ µ1

∑
i<j

cos [2φi + 2φj] . (23)

This fact gives rise to the important difference between integer and half-integer spin chains.

Following his Equation (3.28), the author wants to illustrate this point. Consider the disor-

dered region of H2, where all ψn,n>1 decay exponentially. Potentially, the only massless term

is ψ1. The author argues that that one can always find combinations in the perturbative

expansion in (23) to produce cos(β ψ1). This fact is very important for the Sz correlation:

The n-th order perturbation of this correlations is

〈Sz(x)Sz(0)〉 ' µn
1 〈T cos(2φ(x)) cos(2φ(0))Πn

q=1 cos(2φiq(x̄q) + 2φjq(x̄q))〉 (24)

where T is time ordering and x̄ represent integrated variables. The crucial point is that

this correlation can always be arranged to produce the cosine of the sum of an odd number

of φi. In case of half-integer spin, this means that we can arrange terms containing only

cos(β ψ1). At the same time, the perturbative expansion of the sine-Gordon operator itself

will always contain at least one ψn,n>1; which makes this term irrelevant, i.e. ψ1 is massless.

As a result, one finds long-range AF order, and the singlet phase does not exist. In case of

integer spin, the perturbative expansion of the Sz correlation always contains at least one

ψn,n>1, so there is no order; this is the case in the singlet and XY 1 phases found for spin-1.

In order to characterize the XY2 phase, Schulz considers the correlation

G⊥n = 〈[S+(x)
]n [

S−(0)
]n〉 . (25)
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The XY2 phase is realized for large negative D, in the massless region of H1. Following the

same argument as in the spin-1 case, the intermediate Sz states of the original problem are

frozen out, and 2S applications of S+ connect the ground states. The resulting effective

spin-1/2 problem is massless and results in algebraic decay of G⊥n for n = 2S.

V. TRANSVERSE CORRELATION

In Section IV, Schulz considers the phase XY 1 which was found for both integer and half

integer spin chains in the previous sections. In this phase, the fields Ψ1, X1 are massless, and

are thus described by the Luttinger Hamiltonian. The transverse correlation is mainly given

by S+ = c⊥ e−iX1/
√

2S. The factor of proportionality c⊥ involves the other, massive, fields.

I will now derive Schulz’ expression (4.8) for the transverse correlation. In the following, I

will denote X1 by θ.

Consider the massless Luttinger Field Theory. The quantity I want to calculate is

F (x, τ) = 〈TτS
+(x, τ)S−(0, 0)〉/c2

⊥

= 〈Tτe
−iεθ(x,τ)eiεθ(0,0)〉 =

1

Zθ

∫
Dθ Dθ eiε(θ(0,0)−θ(x,τ)) e−Sθ

(26)

since the only important contribution comes from θ, the other fields were integrated over in

the last expression. The action for θ is given by (u = 1):

Sθ =
K

2π

∫
dx

∫ β

0

dτ {(∂τθ)
2 + (∂xθ)

2} (27)

The path integral is easily performed in Fourier space, where the action is diagonal:

Sθ =
K

2πLβ

∑

k,ωn

{ω2
n + k2}|θ(k, n)|2 = θ†Mθ (28)

with Mpq = δpq
K

2πLβ
(ω2

p + k2
p). The exponent in (26) can be written as

iε(θ(0, 0)− θ(x, τ)) =
iε

Lβ

∑
q

(1− e−iqr)θq = i
(
J †θ + θ†J

)
(29)

with Jq = ε
2Lβ

(1 − e−iqr) and qr = kx − ωnτ . After completing the square, I recover the

usual formula for Gaussian integrals:

1

Zθ

∫
Dθ Dθ e−θ†Mθ+i(J†θ+θ†J) = e−J†M−1J (30)
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I need to evaluate the sum on the right hand side of (30):

J †M−1J =

(
ε

2Lβ

)2
2πLβ

K

∑

n k

2(1− cosqr)

ω2
n + k2

=
ε2π

KβL

∑

n k

1− cos(kx− ωnτ)

ω2
n + k2

(31)

The sum over the Matsubara frequencies ωn = 2πn
β

can be performed using the residue

theorem on the function multiplied by a Bose factor nB(z) = 1
eβz−1

:10

0 =
1

2πi

∮

B(∞)

dω nB(ω)
1− cos(kx + iωτ)

−ω2 + k2
=

1

β

∑
n

1− cos(kx− ωnτ)

ω2
n + k2

+nB(k)
1− cos(kx + ikτ)

2k
+ nB(−k)

1− cos(kx− ikτ)

−2k
.

(32)

Writing the sum over k as an integral 1
L

∑
k → 1

2π

∫
dk, and adding the convergence factor

e−α|k|, I get

2π

Lβ

∑

n k

1− cos(kx− ωnτ)

ω2
n + k2

=

∫ ∞

−∞
dk [−nB(k)

1− cos(kx + ikτ)

2k
+ nB(−k)

1− cos(kx− ikτ)

2k
] e−αk

=

∫ ∞

0

dk

2k
(nB(k) + nB(−k)) {2− cos(k(x + iτ))− cos(k(x− iτ))} e−αk

=
1

2
f(

x− iτ

β
,
α

β
) +

1

2
f(

x + iτ

β
,
α

β
)

(33)

where

f(ξ, δ) =

∫ ∞

0

dt

t

et + 1

et − 1
(1− cos(tξ)) e−δt . (34)

To do this integral, I use the following relation [4, p. 249]

log Γ(1 + z) =

∫ ∞

0

dt

t
{z − 1− e−zt

1− e−t
} . (35)

Using this relation, I can write (34) in the following way:

f(ξ, δ) = −1

2
log[

Γ(1 + iξ + δ)Γ(1− iξ + δ)Γ(iξ + δ)Γ(−iξ + δ)

Γ(1 + δ)2 Γ(δ)2
] (36)

Letting δ → 0 and using the following relation [4, p. 259]

|Γ(iξ)|2 =
π

ξ sinh πξ
, (37)

I can write

f(ξ, δ) = −1

2
log[

δ2 π2

sinh2 πξ
] = log[

sinh πξ

δ π
] . (38)
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Finally, using Eqs. (31), (33), and (38) I get

J †M−1J =
ε2

2K

1

2
{f(

x− iτ

β
,
α

β
) + f(

x + iτ

β
,
α

β
)}

=
ε2

4K
log[

β2

α2π2
sinh(π

x− iτ

β
) sinh(π

x + iτ

β
)]

(39)

and I recover Schulz’ expression (4.7) :11

F (x, τ) = 〈Te−iX1(x,τ)/
√

2SeiX1(0,0)/
√

2S〉 = e−J†M−1J

= (απT )2ξ {sinh πT (x− iτ) sinh πT (x + iτ)}−ξ
(40)

with ξ = ε2

4K
= 1

8KS
.

To get the transverse correlation, I need to Fourier transform the real time retarded

correlation function S⊥. This is done by Wick rotating τ → it + α sign(t). Using (26) and

the fact that t > 0, I get

S⊥(x, t) = −iY (t)〈[S+(x, t), S−(0, 0)]| = Y (t) 2 c2
⊥ImF (x, it) (41)

It is clear from (40) that F (x, it) has an imaginary part part only when (x + t)(x − t) =

x2 − t2 < 0, i.e. inside the light-cone. In this case I use the principal value of the exponent

function: (−a)−ξ = e−ξ Log(−a) = e−ξ (ln a+iπ) = a−ξe−ξi π. The Fourier transform can then be

written as

S⊥(ω, k)

= − sin(πξ) 2c2
⊥ (απT )2ξ

∫

t,t2−x2>0

dx dt ei(ωt−kx) {sinh πT (x + t) sinh πT (t− x)}−ξ .
(42)

The integral is particularly simple using light-cone coordinates ξ± = t± x :

S⊥(ω, t) = − sin(πξ) c2
⊥ (απT )2ξ Π±

∫ ∞

0

dξ± eiξ±(k∓ω) (sinh πTξ±)−ξ (43)

To evaluate the integral
∫∞
0

ds ei sq (sinh πT s)−s, I use Eulers first integral, which is defined

as B(x, y) =
∫ 1

0
dt tx−1 (1− t)y−1. I perform the variable change t1/2 = e−πT s:

∫ ∞

0

ds ei sq (sinh πTs)−ξ = 2ξ

∫ 1

0

dt

2πT t
t−iq/(2πT ) (t−1/2 − t1/2)−ξ

=
2ξ

2πT

∫ 1

0

dt t−i q/(2πT )−1 tξ/2(1− t)−ξ

=
2ξ

2πT
B(− i q

2πT
+

ξ

2
, 1− ξ)

(44)
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Finally, the transverse correlation (43) can be written as

S⊥(k, ω) = −c2
⊥ sin(πξ) α2(2πT )2(ξ−1) B(

k − ω

2πi T
+

ξ

2
, 1− ξ) B(

k + ω

2πi T
+

ξ

2
, 1− ξ) (45)

which is Schulz’ expression (4.8).

The imaginary part of the spin susceptibility, S(k, ω) = Imχ, (longitudinal or transverse

correlation) has the physical meaning of the spectral weight of spin excitations. It can be

measured in neutron scattering experiments, where it is proportional to the scattering cross

section. It is interesting to note that the S⊥ here has no singularities on the real axis, as it

would be the case for a Fermi-liuid on the quasi-particle dispersion.

VI. CONCLUSIONS

For integer spin chains, Schulz finds a region in the phase space with singlet ground state

and massive excitations. For half-integer spin chains, this region is absent. Instead of the

singlet phase, Schulz finds a massive anti-ferro region. The massless XY 1 region, however, is

enhanced in the half-integer case. In both cases, there are the XY 1 and XY 2 phases, where

transverse and higher power transverse correlations, respectively, have algebraic decay.

The primary goal of the paper was to confirm Haldanes predictions. As far as I can see,

Schulz predicts a much more sophisticated and detailed phase diagram than Haldane did.

Haldane predicted a massive magnon in the integer case. While in the half-integer case,

Haldane predicts additionally gapless excitations.

One important shortcoming of Schulz procedure is that it is a weak coupling approach.

Higher order terms will couple the fields of H1 and H2 and make a treatment much more

difficult.
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APPENDIX A: ORIGINAL TASK

Read and comment the paper “Phase diagrams and correlation exponents for quantum

spin chains of arbitrary spin quantum number” PRB 34 6372 (1986) by H. J. Schulz. Here

are some questions to guide your comments, but feel free to add any comment you want.

• What is the goal of this paper ? What was the main debate that the paper is trying

to address at the time it was written ?

• Do you agree with the representation of spin 1 operators used at the beginning of

Section II ? What is the difference with a real spin 1 ? Is this difference important ?

• Rederive yourself the Hamiltonian (2.7), (2.8) and the spin operators (2.9), (2.10),

using the bosonization technique.

• What are the main findings of section II ?

• What is the goal of Section III ?

• Show that (3.9) is indeed a correct unitary transformation to diagonalize the bilinear

part of (3.4).

• What does the author want to show following equation (3.28) ?

• Rederive formula (4.8). What is this quantity representing in physical terms ? How

can it be measured ?

• Did the paper reach the goals it sets in the introduction ? Other comments on this

paper ?


