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Abstract. The Bogolubov-de Gennes equations for a non-homogenous
superconductor are derived. Equilibrium transport properties through
an S-I-N junction are calculated. A resonance condition for the An-
dreev reflection is found and it is shown that the resonances can
be understood from quasi-classical bound states localized at the
S-I-N interface.
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1. Mean field Hamiltonian

We start from the following field theory describing a non-relativistic,
non-locally interacting electron gas in n dimensions2:
(1)

H =
∑

σ

∫
drdr′{ψσ(r)†He(r, r

′)ψσ(r′) +
1

2
V (r, r′) |ψσ(r)|2 |ψσ̄(r′)|2}

The fermionic field operators satisfy the usual commutation relations:

{ψ†
σ(r), ψµ(r′)} = δσµδ(r − r′)(2a)

{ψσ(r), ψµ(r′)} = 0(2b)

The kinetic energy He(r, r
′) is taken with respect to the Fermi energy.

It is a symmetric function and typically of the form

(3) He(r, r
′) = He(r − r′) = δ(r − r′)(

(p− eA)2

2m
+ U(r)− εF )

The 2-body interaction potential V (r, r′) is symmetric and real.
We are interested in the ground state and low-lying excitations of this

Hamiltonian. We do a mean mean-field decoupling of the interaction
term, supposing that the ground state is non-magnetic (He = H∗

e ), so
that 〈ψ†

σψσ̄〉 = 0. Terms of the form 〈ψ†
σψσ〉 are absorbed in the kinetic

energy He. The resulting mean-field Hamiltonian is of a generalized
BCS form:
(4)

HMF =

∫
drdr′{

∑
σ

ψσ(r)†He(r, r
′)ψσ(r′) + ∆(r, r′)ψ†

↑(r)ψ
†
↓(r

′) + h.c.}

where ∆(r, r′) = −V (r, r′) 〈ψ↑(r)ψ↓(r′)〉. Spin-rotational symmetry of
the ground state implies ∆(r, r′) = ∆(r′, r).

2. Bogolubov-de Gennes equation

We want to diagonalize the mean field Hamiltonian (4). For this we
do the following Bogolubov transformation:

(5) γn
σ
† =

∫
dr {un(r)ψ†

σ(r) + σvn(r)ψσ̄(r)}

2We omit vector symbols here where it does not lead to confusion; the integrals
are taken over a finite region of Rn.
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n labels the spectrum, σ =↑, ↓ is the spin of the quasi-particle. We
require the new operators γn

σ to be fermionic:

{γn
σ
†, γm

µ } = δσµδ
nm(6a)

{γn
σ , γ

m
µ } = 0(6b)

Equations (6a) and (6b) imply respectively that the un, vn are orthog-
onal in the following sense∫

dr {un(r)u∗m(r) + vn(r)v∗m(r)} = δnm(7a) ∫
dr {un(r)vm(r)− um(r)vn(r)} = 0(7b)

Finally, from (5) and (6) it follows that

(8) ψσ(r) =
∑

n

{un(r)γn
σ − σv∗n(r)γn

σ̄
†}

The Hamiltonian HMF is diagonal if

(9) [γn
σ , HMF ] = Enγ

n
σ

This requirement fixes the Bogolubov functions (un, vn). We calculate
the commutator [ψσ(r), HMF ] using (9) and replacing ψ with help of
relation (8). On the other hand, the same quantity is calculated using
the original expression for HMF (4). The resulting expressions must be
equal for all n. They are given by:

[ψσ(r), HMF ] =
∑

n

[un(r)γn
σ − σv∗nγ

n
σ̄
†, HMF ]

=
∑

n

En(un(r)γn
σ + σv∗nγ

n
σ̄
†)

(10a)

[ψσ(r), HMF ] =

∫
dr′ {He(r, r

′)ψσ(r′) + σ∆(r, r′)ψ†
σ̄(r′)}

=
∑

n

∫
dr′ [He(r, r

′)un(r′) + ∆(r, r′)vn(r′)]γn
σ

+ σ[−He(r, r
′)v∗n(r′) + ∆(r, r′)u∗n(r′)]γn

σ̄
†

(10b)

Equating coefficients of γn
σ and γn

σ̄
† in (10) results in the space depen-

dent Bogolubov-de Gennes equations:

(11)

∫
dr′

(
He(r, r

′) ∆(r, r′)
∆∗(r′, r) −H∗

e (r′, r)

)
Ψn(r′) = EnΨn(r)

where we have used the notation Ψn = (un, vn)T . Time reversal sym-
metry can be broken in presence of an external magnetic field, in this
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case He 6= H∗
e . Since we assume a non-magnetic ground-state, we will

set He(r, r
′) = δ(r − r′)ξ(−i~∇), ξ = ξ∗ in the following. We will also

set ~ = 1 from now on.

3. Bulk spectrum, Andreev and Local approximation

In the bulk of a homogenous superconductor, we have

(12) ∆(r, r′) = ∆(r − r′)

In this case, the Bogloubov-de Gennes equations are diagonalized by
plain waves:

(13) Ψn(r) = Ψ̄kn exp(iknr)

Equation (11) is now

(14)

(
ξ(k) ∆k

∆∗
k −ξ(k)

)
Ψ̄k = EkΨ̄k

where ∆k =
∫
dr∆(r) exp(−ikr). The spectrum is given by:

E = Ek , Ψ̄p
k = (W+

k , η
∗
k W

−
k )T(15a)

E = −Ek , Ψ̄h
k = (−ηk W

−
k
∗
,W+

k
∗
)T(15b)

where

Ek =

√
ξ(k)2 + |∆k|2

W±
k =

√
1

2
(1± ξ(k)

Ek

)

ηk =
∆k

|∆k|

(16)

In the Andreev approximation[1] we suppose that excitations very
close to the Fermi energy are nearly plain waves. In other terms, their
fourier expansion is highly peaked around a wave vector lying on the
Fermi surface.

(17) Ψn(r) ' Ψ̄~kF
(r)ei~kF ·~r

where Ψ̄~kF
(r) is a slowly varying function on the length scale 1/kF .
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We expand the kinetic term in (11) around the Fermi wave vector:

e−i~kF ·~rξ(−i~∇)Ψ(~r) ' e−i~kF ·~rξ(−i ~∇)Ψ̄~kF
(r)ei~kF ·~r

' ξ(~kF − i~∇)Ψ̄~kF
(~r)

' (ξ(~kF )− i~vkF
· ~∇+ . . .)Ψ̄~kF

(~r)

' −i~vkF
· ~∇Ψ̄~kF

(r)

(18)

To approximate the integration over the pair potential, we use in
addition the local approximation[1]. The local approximation consists
in saying that Ψ̄(r) varies negligibly on the coherence length scale vF

∆
.

This allows us to write∫
dr′∆(r, r′)Ψ(r′)e−ikF r

'
∫
dr′∆(R− x,R + x)Ψ̄kF

(r − x)eikF x ' Ψ̄(r)∆kF
(R)

(19)

where

x =
r′ − r

2

R =
r + r′

2

∆kF
(~R) =

∫
dnx∆(~R− ~x, ~R + ~x)e2i ~kF ·~x

(20)

Using these approximations, the BdG equations (11) reduce to

(21)

(
−i ~vkF

· ~∇ ∆kF
(r)

∆∗
kF

(r) i ~vkF
· ~∇

)
Ψ̄kF

(r) = EΨ̄kF
(r)

In the bulk, we recover the exact equations (14). The solutions are
of course the same, expanded for small excitations around the Fermi
energy.

4. Transport through an N-I-S junction

We consider now an normal metal covered by a thin insulating layer
in contact with a superconductor. The interface is perpendicular to
the x-axis. The pairing interaction ∆ vanishes in the normal metal
and takes a constant value in the superconductor. The insulator is
modeled by a sharp delta potential.

∆~kF
(~r) = ∆~kF

Θ(x)(22a)

U(~r) = V δ(x)(22b)
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The S an N bulk solutions are matched at the interface by the fol-
lowing continuity condition:

Ψ̄S(0)− Ψ̄N(0) = 0(23a)

i vx
~kF

(Ψ̄S(0)− Ψ̄N(0)) = 2V Ψ̄N(0)(23b)

Matching condition (23b) is obtained by integrating the BdG equation
(21) along the x axis from −ε to ε and letting ε → 0. We must be
careful to use the correct sign for the Fermi velocity around which we
approximate the different N and S excitations.

We use the following superposition of excitations at a given energy
E. In the normal metal we have:

(24) ΨN =

(
1
0

)
ei (~r·~kF++x q+) +

(
0
a

)
ei (~r·~kF++x q−) +

(
b
0

)
ei (~r·~kF−+x q−)

~kF+ is an arbitrary (incident) vector on the Fermi surface and ~kF− =
~kF+ − 2x̂ · ~kF+ is the normally reflected wave vector. An electron is

incident at a wave vector ~kF+ + ~q+, while there is an Andreev reflected

hole with wave vector ~kF+ + ~q− and an ordinarily reflected electron

with ~kF−+~q−. We suppose that there is no incident hole in the normal
metal.

We only take particle-like excitations with positive group velocity in
the superconductor (only transmitted, no incident particles):

(25) ΨS = c

(
W+

+

η∗+W
−
+

)
ei (~r·~kF++x k+) + d

(
η−W

−
−

W+
−

)
ei (~r·~kF−+x k+)

The coefficients W and η are the positive energy solutions to the Bogol-
ubov equations given in (16). The subscript denotes the Fermi vector

around which we develop the BdG equations, ± meaning ~kF±.
The excitations are small with respect to kF . They are given by:

q± = ± E

|vx
kF
|

k± = ±
√
E2 − |∆kF±|2

|vx
kF
|

(26)

Their direction is along the x-axis.
These excitations represent are all possible processes at given energy

E respecting the translational invariance parallel to the interface.3

3In fact, I don’t quite understand why we don’t take transmitted anti-cooper
pairs. Probably because we suppose that a large fraction of electrons is still in the
Fermi sea and we cannot create Bogolubov particles there.
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The matching conditions (23) produce the following 4 equations
which we can solve for the transmission and reflection coefficients a, b,
c and d.

1 + b = cW+
+ + d η−W

−
−

a = c η∗+W
−
+ + dW+

−

1− b = cW+
+ − d η−W

−
− + 2iZ (1 + b)

a = c η∗+W
−
+ − dW+

− + 2iZ a

(27)

Where the barrier strength Z is given by:

Z =
V

|vx
kF
|

The solution for the scattering coefficients is:

a(E) =
η∗+W

−
+W

+
−

W+
+W

+
− + Z2 Γ

b(E) =
−Z(Z + i) Γ

W+
+W

+
− + Z2 Γ

c(E) =
W+

− (1− iZ)

W+
+W

+
− + Z2 Γ

d(E) =
iZ η∗+W

−
+

W+
+W

+
− + Z2 Γ

(28)

where

Γ = W+
+W

+
− − η∗+η−W

−
+W

−
−

4.1. Quasi-particle current conservation. The current conserva-
tion is slightly subtle and often wrongly stated in the literature. A good
review discussing the currents in detail was given by Kashiwaya [6].

On one hand, the global phase invariance of the original Hamilton-
ian (1) implies a conserved electric current4. On the other hand, the
diagonalized mean field Hamiltonian (4) implies the conservation of
the quasi-particle excitation number. The latter is considered in the
following. The single particle excitation Ψ = (u(r), v(r))T carries the
QP-current [6]:

(29) Jx
q (r) = Im(u∗(r)∂xu(r)− v∗(r)∂xv(r))

4The conventional electric current conservation is of course broken in the super-
conductor. It is only conserved up to a source term coming from QP supercurrent.
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The quasi-particle current is equal on both sides of the interface. This
implies:

(30) |a|2 + |b|2 + Re(
k+

q+
)(|c|2 + |d|2) = 1

For sub-gap energies, k+ is completely imaginary and the QP-current
in the superconductor vanishes.5

5. Reflection resonances

We are interested in resonances in the Andreev reflected holes. It is
clear from the current conservation relation (30) that |a| is maximal
in the sub-gap region (E < |∆kF

|) where k± are purely imaginary. It
is furthermore clear from (28) and (30) that the reflection peaks in
the sub-gap region are given by b = 0 or equivalently Γ = 0. In this
case |a| = 1 and all electrons are Andreev reflected. Thus, we get the
resonance condition for complete Andreev reflection:

(31) Γ(E) = 0

This resonance condition can be written as:

(32) W+
+W

+
− = η∗+η−W

−
+W

−
−

The norm as well as the phase of the complex numbers on right and
left hand side must be the equal. The condition on the norm is always
fulfilled in the sub-gap region. The condition on the phase is:

(33) −φ+ + φ− + arg

(
W−

+

W+
+

)
+ arg

(
W−

−

W+
−

)
= 2πn

This equation may have several sub-gap resonance solutions Eres
n . We

do not dwell on solving them here.

6. Surface bound states

We know from scattering theory that resonances in scattering states
always indicate the existence of bound states. We will see in the follow-
ing that this is indeed the case here: there exists bound states localized
on the S-I-N interface which have exactly the resonance energies, at
least at the semiclassical level.

Consider a thin layer of normal metal in contact with a supercon-
ductor. The layer has thickness dN . It is covered by a “mirror” which
specularly reflects incident electrons or holes.

5Not so the electric current, but this is out of scope of this work. See [6] for
details.
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Suppose an electron incident on the superconductor at a sub-gap en-

ergy with the wave vector ~kF+. The electron is fully Andreev reflected
as a hole. The hole is then specularly reflected at an infinite potential

step and again incident on the superconductor with a wave vector ~kF−,
where it is Andreev reflected back as an electron. This process lies
on a closed path and its spectrum can be found in the semiclassical
approximation by the Bohr-Sommerfeld quantization rule:

(34) δΦ = (2n+ 1) π

where δΦ is the total phase the particle acquires during a closed tra-
jectory and n is integer. The phase change during the Andreev e→ h
reflection is given by the phase of coefficient a(E) in (28):

Φe→h = −φ+ + arg

(
W−

+

W+
+

)
At the specular reflection, the wave acquires the phase π. To calculate
the Andreev reflection coefficient for the h→ e process, we note that we

first need to exchange ~kF+ ↔ ~kF− in the excitations (24) and (25). To
have again the same expressions, we further need to replace k+ ↔ k−.
This amounts in changing all sub- and superscripts ± ↔ ∓ of W and η
in the scattering coefficients (28). The phase of the Andreev reflected
electron is given by a−1:

Φh→e = φ− + arg

(
W−

−

W+
−

)
During the propagation in the normal metal, the wave acquires the

phase
Φ = 4dNq

+

Finally, the total phase shift is given by

(35) δΦ = −φ+ + arg

(
W−

+

W+
+

)
+ π + φ− + arg

(
W−

−

W+
−

)
+ 4dNq

+

Setting the layer thickness dN to zero, we see that the Bohr-Sommerfeld
quantization condition for the surface bound states is the same as the
resonance condition in the sub-gap region (33):

(36) δΦ = −φ+ + φ− + arg

(
W−

+

W+
+

)
+ arg

(
W−

−

W+
−

)
= 2nπ

We have thus shown that the Andreev resonances correspond to semi-
classical bound states living on the S-I-N surface.
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