Latente Wärme

Erwärmt man einen Festkörper (z.B. Wassereis), so schwingen die Teilchen (Atome/Moleküle) immer stärker um ihre Ruhelage. Sobald die thermische (mittlere kinetische) Energie grösser wird als die Bindungsenergie, so bricht die geordnete Struktur zusammen: Der Körper schmilzt (Phasenübergang fest \rightarrow flüssig) oder sublimiert (fest \rightarrow gasf.). Zum Schmelzen ist die Schmelzwärme $Q_{\rm f}=mL_{\rm f}$ erforderlich. Ein analoger Prozess findet beim Verdampfen statt (flüssig \rightarrow gasf.). Dazu nimmt der Stoff die Verdampfungswärme $Q_{\rm v}=mL_{\rm v}$ auf.

Im Prozess des Abkühlens werden die entsprechenden Wärmen abgegeben: Die Kondensationswärme $-Q_{\rm v}$ bzw. die Erstarrungswärme $-Q_{\rm f}$.

 $Q_{\rm f}$ und $Q_{\rm v}$ nennt man auch latente (=versteckte) Wärmen, da sich die (mittlere) Temperatur trotz Wärmezufuhr oder -entzug beim Schmelzpunkt $\vartheta_{\rm f}$ bzw. beim Siedepunkt $\vartheta_{\rm v}$ nicht ändert (siehe Q- θ Diagramm). Bei Wasser ist $\vartheta_{\rm f}$ die Temperatur eines gut gerührten Eis-Wasser Gemischs.

Die Grössen

Spezifische Wärmekapazitäten: c^{fest} , $c^{\text{fl.}}_p$, c^{gas}_p Schmelz-/Erstarrungspunkt: ϑ_{f} ; Siedepunkt: ϑ_{v} Spezifische Schmelzwärme: L_{f} ; Spezifische Verdampfungswärme: L_{v} sind Materialparameter (FoTa s. 190–191).